A129116 Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.
1, 1, 2, 1, 2, 6, 1, 2, 3, 24, 1, 2, 3, 8, 120, 1, 2, 3, 4, 15, 720, 1, 2, 3, 4, 10, 48, 5040, 1, 2, 3, 4, 5, 18, 105, 40320, 1, 2, 3, 4, 5, 12, 28, 384, 362880, 1, 2, 3, 4, 5, 6, 21, 80, 945, 3628800, 1, 2, 3, 4, 5, 6, 14, 32, 162, 3840, 39916800, 1, 2, 3, 4, 5, 6, 7, 24, 45, 280, 10395, 479001600
Offset: 1
Examples
Table begins: k / A(k,n) 1 | 1 2 6 24 120 720 5040 40320 362880 3628800 ... = A000142. 2 | 1 2 3 8 15 48 105 384 945 3840 ... = A006882. 3 | 1 2 3 4 10 18 28 80 162 280 ... = A007661. 4 | 1 2 3 4 5 12 21 32 45 120 ... = A007662. 5 | 1 2 3 4 5 6 14 24 36 50 ... = A085157. 6 | 1 2 3 4 5 6 7 16 27 40 ... = A085158.
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- Eric Weisstein's World of Mathematics, Multifactorial.
Crossrefs
Programs
-
Maple
A:= proc(k,n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
-
Mathematica
A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)
Formula
A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021
Extensions
Corrected and extended by Alois P. Heinz, Feb 02 2009
Comments