cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129118 For each permutation p of {1,2,...,n} define minabsjump(p) = min(|p(i) - i|, 1<=i<=n); a(n) is the sum of minabsjumps of all p.

Original entry on oeis.org

0, 1, 2, 10, 48, 295, 2068, 16654, 150382, 1508500, 16631696, 199966907, 2603709640, 36501212971, 548150650582, 8779185528284, 149376644391508, 2690852138104504, 51161190374132154, 1023850096381041159, 21512688329462044264
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    n:=8; with(combinat); P:=permute(n); ct:= 0; for j to factorial(n) do ct:= ct+min(seq(abs(P[j][i]-i),i=1..n)) end do: ct; # yields a(n) for the specified n - Emeric Deutsch, Aug 24 2007
    # second Maple program:
    b:= proc(s) option remember; (n-> `if`(n=1, x^(s[]-1), add((p->
          add(coeff(p, x, i)*x^min(i, abs(n-j)), i=0..degree(p)))(
            b(s minus {j})), j=s)))(nops(s))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*i, i=1..n-1))(b({$1..n})):
    seq(a(n), n=1..15);  # Alois P. Heinz, Jan 21 2019
  • Mathematica
    b[s_] := b[s] = Function[n, If[n == 1, x^(s - 1), Sum[Function[p, Sum[ SeriesCoefficient[p, {x, 0, i}]*x^Min[i, Abs[n - j]], {i, 0, Exponent[p, x]}]][b[s ~Complement~ {j}]], {j, s}]]][Length[s]] // Expand;
    a[n_] := a[n] = If[n == 1, 0, Function[p, Sum[SeriesCoefficient[p, {x, 0, i}]*i, {i, 1, n - 1}]][b[Range[n]][[1]]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, May 21 2020, after 2nd Maple program *)

Formula

a(n) = Sum_{k=1..floor(n/2)} k * A299789(n,k). - Alois P. Heinz, Jan 21 2019

Extensions

One more term from Emeric Deutsch, Aug 24 2007
a(11)-a(13) from R. J. Mathar, Nov 01 2007
a(14) from Donovan Johnson, Sep 24 2010
a(15)-a(21) from Alois P. Heinz, Jan 21 2019