cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A129146 a(n) = n-th odd prime minus n-th odd composite number.

Original entry on oeis.org

-6, -10, -14, -14, -14, -16, -16, -16, -16, -18, -14, -14, -14, -16, -12, -10, -14, -10, -10, -12, -8, -8, -4, 2, 2, -2, -4, -6, -4, 8, 10, 14, 14, 20, 18, 22, 22, 24, 28, 32, 28, 36, 34, 36, 34, 42, 52, 52, 52, 50, 54, 54, 62, 62, 62, 66, 66, 70, 72, 70, 78, 90, 92, 92, 92, 100, 102, 110, 106, 108, 112, 118, 120, 124, 124, 128
Offset: 1

Views

Author

Zak Seidov, Apr 01 2007

Keywords

Comments

For small n's, a(n) is negative, while for large n's, a(n) is positive.

Crossrefs

Programs

  • Python
    from sympy import primepi, prime
    def A129146(n):
        if n == 1: return -6
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return prime(n+1)-m # Chai Wah Wu, Aug 01 2024

Formula

a(n) = A065091(n) - A071904(n).

A129145 Alternately odd prime and odd composite numbers.

Original entry on oeis.org

3, 9, 5, 15, 7, 21, 11, 25, 13, 27, 17, 33, 19, 35, 23, 39, 29, 45, 31, 49, 37, 51, 41, 55, 43, 57, 47, 63, 53, 65, 59, 69, 61, 75, 67, 77, 71, 81, 73, 85, 79, 87, 83, 91, 89, 93, 97, 95, 101, 99, 103, 105, 107, 111, 109, 115, 113, 117, 127, 119, 131, 121, 137, 123, 139, 125
Offset: 1

Views

Author

Zak Seidov, Apr 01 2007

Keywords

Comments

For small n's a(2n) >a(2n-1) (that is for small n's, n-th odd prime less than n-th odd composite number), while for large n's a(2n) A129146

Crossrefs

Programs

  • Mathematica
    Module[{nn=100,pr,cm,len},pr=Prime[Range[2,nn+1]];cm=Select[Range[ 9,2nn+1,2],CompositeQ];len=Min[Length[pr],Length[cm]];Riffle[Take[ pr,len],Take[cm,len]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 10 2019 *)
  • Python
    from sympy import prime, primepi
    def A129145(n):
        if n&1: return prime((n>>1)+2)
        if n==2: return 9
        r = n>>1
        m, k = r, primepi(r) + r + (r>>1)
        while m != k:
            m, k = k, primepi(k) + r + (k>>1)
        return m # Chai Wah Wu, Aug 01 2024

Formula

a(2n-1)=A065091(n), a(2n) =A071904(n).
Showing 1-2 of 2 results.