cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129151 The n-th arithmetic derivative of 3^4.

Original entry on oeis.org

81, 108, 216, 540, 1188, 2484, 5076, 10260, 23112, 57996, 135648, 475632, 1586736, 4760640, 20409408, 89259840, 374899968, 1880140032, 9400707072, 64402394112, 395614900224, 2769304412160, 22930714939392, 162970999640064, 1188480788434944, 8320496444780544
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2007

Keywords

Comments

In general, the trajectory of p^(p+1) under A003415 is equal to p^p times the trajectory of p under A129283: n -> n + n'. Here we have the case p = 3 (see A129285 for a(n)/3^3), see A129150 and A129152 for p = 2 and 5. - M. F. Hasler, Nov 28 2019

Crossrefs

Programs

  • Haskell
    a129151 n = a129151_list !! n
    a129151_list = iterate a003415 81  -- Reinhard Zumkeller, Apr 29 2012
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; s = 3^4; Join[{s}, Table[s = dn[s], {25}]] (* T. D. Noe, Mar 07 2013 *)

Formula

a(n+1) = A003415(a(n)), a(0) = 3^4 = 81.
a(n) = A129285(n)*3^3; A129251(a(n)) > 0. - Reinhard Zumkeller, Apr 07 2007