A129155 Number of skew Dyck paths of semilength n that have no primitive Dyck factors.
1, 0, 1, 4, 15, 59, 241, 1011, 4326, 18797, 82685, 367410, 1646494, 7432270, 33761322, 154213566, 707882503, 3263713148, 15107319268, 70182332975, 327111450097, 1529226524057, 7168880978609, 33693179852563
Offset: 0
Keywords
Examples
a(3)=4 because we have UUUDLD, UUDUDL, UUUDDL and UUUDLL.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
G:=(3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..28);
-
Mathematica
CoefficientList[Series[(3-3*x-Sqrt[1-6*x+5*x^2])/(2+x-Sqrt[1-4*x]+Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
z='z+O('z^50); Vec((3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2))) \\ G. C. Greubel, Mar 20 2017
Formula
a(n) = A129154(n,0).
G.f.: (3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2)).
a(n) ~ (475 + 697*sqrt(5)) * 5^n / (3364*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Comments