cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A129171 Sum of the heights of the peaks in all skew Dyck paths of semilength n.

Original entry on oeis.org

0, 1, 6, 32, 165, 840, 4251, 21443, 107946, 542680, 2725635, 13679997, 68623176, 344090307, 1724754180, 8642952000, 43300971885, 216895107480, 1086253033035, 5439405705125, 27234492215400, 136345625309965, 682531666024170
Offset: 0

Views

Author

Emeric Deutsch, Apr 07 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and L=(-1,-1) (left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.

Examples

			a(2)=6 because in the 3 skew Dyck paths of semilength 2, namely UDUD, UUDD and UUDL, the heights of the peaks are 1,1,2 and 2.
		

Crossrefs

Cf. A129170.

Programs

  • Maple
    G:=z*(3-3*z-sqrt(1-6*z+5*z^2))/(1-6*z+5*z^2)/2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
  • Mathematica
    CoefficientList[Series[x*(3 - 3*x - Sqrt[1 - 6*x + 5*x^2])/(1 - 6*x + 5*x^2)/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    z='z+O('z^25); concat([0], Vec(z*(3-3*z-sqrt(1-6*z+5*z^2))/(1-6*z+5*z^2)/2)) \\ G. C. Greubel, Feb 10 2017

Formula

a(n) = Sum_{k=0,..,n} k*A129170(n,k).
G.f.: z*(3-3*z-sqrt(1-6*z+5*z^2))/(1-6*z+5*z^2)/2. - corrected by Vaclav Kotesovec, Oct 20 2012
Recurrence: (n-1)*a(n) = (11*n-19)*a(n-1) - 5*(7*n-17)*a(n-2) + 25*(n-3)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3*5^(n-1)/2*(1-sqrt(5)/(6*sqrt(Pi*n))) . - Vaclav Kotesovec, Oct 20 2012

A128888 Table with g.f. [1-x*n-sqrt(x^2*n^2-2*n*x+1+4*x^2-4*x)]/(2*x).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 10, 0, 1, 4, 15, 36, 36, 0, 1, 5, 24, 84, 176, 137, 0, 1, 6, 35, 160, 510, 912, 543, 0, 1, 7, 48, 270, 1152, 3279, 4928, 2219, 0, 1, 8, 63, 420, 2240, 8768, 21975, 27472, 9285, 0, 1, 9, 80, 616, 3936, 19605, 69504, 151905, 156864
Offset: 0

Views

Author

R. J. Mathar, Apr 19 2007

Keywords

Comments

Column m=2 is essentially the same as A005563 or A067998 or A106230. Row n=1 is essentially the same as A025238 and A002212. The table is read along diagonals and provides the Taylor coefficient of x^m in column m. It also is the slice t=1 through the trivariate g.f. defined in A129170, which provides an implicit proof that all values are nonnegative.

Examples

			Table with rows n>=0 and columns m>=0 starts
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, ...
1, 2, 8, 36, 176, 912, 4928, 27472, 156864, 912832, 5394176, ...
1, 3, 15, 84, 510, 3279, 21975, 151905, 1075425, 7758777, 56839965, ...
1, 4, 24, 160, 1152, 8768, 69504, 568064, 4753920, 40537088, 350963712, ...
1, 5, 35, 270, 2240, 19605, 178535, 1675495, 16095765, 157527055, 1565170985, ...
1, 6, 48, 420, 3936, 38832, 398208, 4205904, 45459840, 500488512, 5593373184, ...
1, 7, 63, 616, 6426, 70427, 801423, 9387917, 112501809, 1372985957, 17007257421,...
		

Crossrefs

Programs

  • Maple
    H := proc(n,x) (-x*n+1-(x^2*n^2-2*n*x+1+4*x^2-4*x)^(1/2))/(2*x) ; end: T := proc(n,m) coeftayl( H(n,x),x=0,m) ; end: for diag from 0 to 20 do for m from 0 to diag do n := diag-m ; printf("%d, ",T(n,m)) ; od ; od;
Showing 1-2 of 2 results.