A129173 Total area below all skew Dyck paths of semilength n.
0, 1, 9, 58, 336, 1853, 9945, 52487, 273939, 1418567, 7303791, 37441560, 191287254, 974642943, 4955123955, 25146686730, 127424717400, 644873878895, 3260055588615, 16465301636090, 83092583965020, 419031686115875
Offset: 0
Keywords
Examples
a(2)=9 because the areas below the skew Dyck paths UDUD, UUDD and UUDL are 2, 4 and 3, respectively.
Links
- G. C. Greubel and Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (terms 0..300 from Vincenzo Librandi)
- E. Deutsch, E. Munarini and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Emeric Deutsch, Emanuele Munarini and Simone Rinaldi, Skew Dyck paths, area, and superdiagonal bargraphs, Journal of Statistical Planning and Inference, Vol. 140, Issue 6, June 2010, pp. 1550-1562, Table 1.
Programs
-
Maple
a[0]:=1: a[1]:=1: a[2]:=9: for n from 3 to 25 do a[n]:=((11*n^2-20*n-6)*a[n-1]-5*(7*n^2-19*n+7)*a[n-2]+25*(n-1)*(n-3)*a[n-3])/(n+1)/(n-2) od: seq(a[n],n=0..25);
-
Mathematica
CoefficientList[Series[(1+x)*(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*(1-5*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
PARI
z='z +O('z^25); concat([0], Vec((1+z)*(1-3*z-sqrt(1-6*z+5*z^2))/(2*z*(1-5*z)))) \\ G. C. Greubel, Feb 10 2017
Formula
a(n) = Sum_{k=0,..,n^2} k*A129172(n,k).
G.f.: (1+z)*(1-3*z-sqrt(1-6*z+5*z^2))/(2*z*(1-5*z)).
(n+1)(n-2)a(n)-(11n^2-20n-6)a(n-1)+5(7n^2-19n+7)a(n-2)-25(n-1)(n-3)a(n-3) = 0.
a(n) ~ 6*5^(n-1)*(1-sqrt(5)/sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 20 2012
Comments