A129184 Shift operator, right.
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1
Examples
First few rows of the triangle: 0; 1, 0; 0, 1, 0; 0, 0, 1, 0; 0, 0, 0, 1, 0; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Formula
Infinite lower triangular matrix with all 1's in the subdiagonal and the rest zeros.
From Tom Copeland, Nov 10 2012: (Start)
Let M(t) = I/(I-t*T) = I + t*T + (t*T)^2 + ... where T is the shift operator matrix and I the Identity matrix. Then the inverse matrix is MI(t)=(I-tT) and M(t) is A000012 with each n-th diagonal multiplied by t^n. M(1)=A000012 with inverse MI(1)=A167374. Row sums of M(2), M(3), and M(4) are A000225, A003462, and A002450.
Let E(t)=exp(t*T) with inverse E(-t). Then E(t) is A000012 with each n-th diagonal multiplied by t^n/n! and each row represents e^t truncated at the n+1 term.
The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x):
1) b(0) = 0, b(n) = a(n-1),
2) B(x) = x A(x), or
3) EB(x) = D^(-1) EA(x), where D^(-1)x^j/j! = x^(j+1)/(j+1)!.
The operator M(t) can be characterized as
4)M(t)EA(x)= sum(n>=0)a(n)[e^(x*t)-[1+x*t+...+ (x*t)^(n-1)/(n-1)!]]/t^n
= exp(a*D_y)[t*e^(x*t)-y*e(x*y)]/(t-y)
= [t*e^(x*t)-a*e(x*a)]/(t-a), umbrally where (a)^k=a_k,
5)[M(t) * a]_n = a(0)t^n +a(1)t^(n-1)+a(2)t^(n-2)+...+a(n).
The exponentiated operator can be characterized as
6) E(t) A(x) = exp(t*x) A(x),
7) E(t) EA(x) = exp(t*D^(-1)) EA(x)
8) [E(t) * a]_n = a(0)t^n/n! + a(1)t^(n-1)/(n-1)! + ... + a(n).
(End)
a(n) = A010054(n+1). - Andrew Howroyd, Feb 02 2020
Extensions
Terms a(46) and beyond from Andrew Howroyd, Feb 02 2020
Comments