cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129226 Residues of the Lucas - Lehmer primality test for M(31) = 2147483647.

Original entry on oeis.org

4, 14, 194, 37634, 1416317954, 669670838, 1937259419, 425413602, 842014276, 12692426, 2044502122, 1119438707, 1190075270, 1450757861, 877666528, 630853853, 940321271, 512995887, 692931217, 1883625615, 1992425718
Offset: 0

Views

Author

Sergio Pimentel, Apr 04 2007

Keywords

Comments

Since a(29) = 0, M(31) = 2147483647 is prime. Mersenne numbers are only prime if a(p-2) = 0.

Examples

			a(29) = 65536^2 - 2 mod 2147483647 = 0.
		

Crossrefs

Programs

  • Python
    p = 31; Mp = 2**p - 1
    from itertools import accumulate
    def f(anm1, _): return (anm1**2 - 2) % Mp
    print(list(accumulate([4]*30, f))) # Michael S. Branicky, Apr 14 2021

Formula

a(0) = 4, a(n) = a(n-1)^2 mod 2^p-1. Last term: a(p-2).