cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A129225 Residues of the Lucas - Lehmer primality test for M(29) = 536870911.

Original entry on oeis.org

4, 14, 194, 37634, 342576132, 250734296, 433300702, 16341479, 49808751, 57936161, 211467447, 71320725, 91230447, 153832672, 217471443, 239636427, 223645010, 90243197, 27374393, 490737401, 35441039, 303927542, 202574536
Offset: 0

Views

Author

Sergio Pimentel, Apr 04 2007

Keywords

Comments

Since a(27) > 0, M(29) = 536870911 is composite. Mersenne numbers are only prime if a(p-2) = 0.

Examples

			a(27) = 365171774^2 - 2 mod 536870911 = 458738443.
		

Crossrefs

Programs

  • Mathematica
    NestList[Mod[#^2-2, 2^29-1] &, 4, 27] (* Ben Whitmore, Dec 28 2024 *)

Formula

a(0) = 4, a(n) = a(n-1)^2 - 2 mod 2^p-1, last term: a(p-2).

A129219 Residues of the Lucas - Lehmer primality test for M(7) = 127.

Original entry on oeis.org

4, 14, 67, 42, 111, 0
Offset: 0

Views

Author

Sergio Pimentel, Apr 04 2007

Keywords

Comments

Since a(5) = 0, M(7) is prime.

Examples

			a(5)= 111^2 - 2 mod 127 = 0
		

Crossrefs

Formula

a(0) = 4, a(n) = a(n-1)^2 mod 2^p-1. Last term: a(p-2).

A129220 Residues of the Lucas - Lehmer primality test for M(11) = 2047.

Original entry on oeis.org

4, 14, 194, 788, 701, 119, 1877, 240, 282, 1736
Offset: 0

Views

Author

Sergio Pimentel, Apr 05 2007

Keywords

Comments

Since a(9) > 0, M(11) is composite. In fact, 2047 = 23 * 89

Examples

			a(9) = a(8)^2 - 2 mod 2047 = 282^2 - 2 mod 2047 = 1736.
		

Crossrefs

Formula

a(0) = 4; a(n) = a(n-1)^2-2 mod 2^p-1. Last term: a(p-2).

Extensions

Offset corrected by Nathaniel Johnston, May 31 2011

A129221 Residues of the Lucas - Lehmer primality test for M(13) = 8191.

Original entry on oeis.org

4, 14, 194, 4870, 3953, 5970, 1857, 36, 1294, 3470, 128, 0
Offset: 0

Views

Author

Sergio Pimentel, Apr 04 2007

Keywords

Comments

Since a(11) = 0, M(13) = 8191 is prime.

Examples

			a(11)= 128^2 - 2 mod 8191 = 16382 mod 8191 = 0
		

Crossrefs

Formula

a(0) = 4 a(n) = a(n-1)^2 mod 2^p-1 Last term: a(p-2)

A129222 Residues of the Lucas - Lehmer primality test for M(17) = 131071.

Original entry on oeis.org

4, 14, 194, 37634, 95799, 119121, 66179, 53645, 122218, 126220, 70490, 69559, 99585, 78221, 130559, 0
Offset: 0

Views

Author

Sergio Pimentel, Apr 04 2007

Keywords

Comments

Since a(15) = 0, M(17) = 131071 is prime.

Examples

			a(15) = 130559^2 - 2 mod 131071 = 0.
		

Crossrefs

Formula

a(0) = 4, a(n) = a(n-1)^2 mod 2^p-1. Last term: a(p-2).

A129223 Residues of the Lucas - Lehmer primality test for M(19) = 524287.

Original entry on oeis.org

4, 14, 194, 37634, 218767, 510066, 386344, 323156, 218526, 504140, 103469, 417706, 307417, 382989, 275842, 85226, 523263, 0
Offset: 0

Views

Author

Sergio Pimentel, Apr 04 2007

Keywords

Comments

Since a(17) = 0, M(19) = 524287 is prime.

Examples

			a(17) = 523263^2 - 2 mod 524287 = 0.
		

Crossrefs

Formula

a(0) = 4, a(n) = a(n-1)^2 mod 2^p-1. Last term: a(p-2).

A129224 Residues of the Lucas - Lehmer primality test for M(23) = 8388607.

Original entry on oeis.org

4, 14, 194, 37634, 7031978, 7033660, 1176429, 7643358, 3179743, 2694768, 763525, 4182158, 7004001, 1531454, 5888805, 1140622, 4321431, 7041324, 2756392, 1280050, 6563009, 6107895
Offset: 0

Views

Author

Sergio Pimentel, Apr 04 2007

Keywords

Comments

Since a(21) > 0, M(23) = 8388607 is composite. Mersenne numbers are only prime if a(p-2) = 0.

Examples

			a(21) = 6563009^2 - 2 mod 8388607 = 6107895.
		

Crossrefs

Formula

a(0) = 4, a(n) = a(n-1)^2 mod 2^p-1. Last term: a(p-2).
Showing 1-7 of 7 results.