A129225
Residues of the Lucas - Lehmer primality test for M(29) = 536870911.
Original entry on oeis.org
4, 14, 194, 37634, 342576132, 250734296, 433300702, 16341479, 49808751, 57936161, 211467447, 71320725, 91230447, 153832672, 217471443, 239636427, 223645010, 90243197, 27374393, 490737401, 35441039, 303927542, 202574536
Offset: 0
a(27) = 365171774^2 - 2 mod 536870911 = 458738443.
-
NestList[Mod[#^2-2, 2^29-1] &, 4, 27] (* Ben Whitmore, Dec 28 2024 *)
A129219
Residues of the Lucas - Lehmer primality test for M(7) = 127.
Original entry on oeis.org
4, 14, 67, 42, 111, 0
Offset: 0
a(5)= 111^2 - 2 mod 127 = 0
A129220
Residues of the Lucas - Lehmer primality test for M(11) = 2047.
Original entry on oeis.org
4, 14, 194, 788, 701, 119, 1877, 240, 282, 1736
Offset: 0
a(9) = a(8)^2 - 2 mod 2047 = 282^2 - 2 mod 2047 = 1736.
Cf.
A095847,
A003010,
A129218,
A129219,
A129221,
A129222,
A129223,
A129224,
A129225,
A129226,
A001348.
A129221
Residues of the Lucas - Lehmer primality test for M(13) = 8191.
Original entry on oeis.org
4, 14, 194, 4870, 3953, 5970, 1857, 36, 1294, 3470, 128, 0
Offset: 0
a(11)= 128^2 - 2 mod 8191 = 16382 mod 8191 = 0
A129223
Residues of the Lucas - Lehmer primality test for M(19) = 524287.
Original entry on oeis.org
4, 14, 194, 37634, 218767, 510066, 386344, 323156, 218526, 504140, 103469, 417706, 307417, 382989, 275842, 85226, 523263, 0
Offset: 0
a(17) = 523263^2 - 2 mod 524287 = 0.
A129224
Residues of the Lucas - Lehmer primality test for M(23) = 8388607.
Original entry on oeis.org
4, 14, 194, 37634, 7031978, 7033660, 1176429, 7643358, 3179743, 2694768, 763525, 4182158, 7004001, 1531454, 5888805, 1140622, 4321431, 7041324, 2756392, 1280050, 6563009, 6107895
Offset: 0
a(21) = 6563009^2 - 2 mod 8388607 = 6107895.
A129226
Residues of the Lucas - Lehmer primality test for M(31) = 2147483647.
Original entry on oeis.org
4, 14, 194, 37634, 1416317954, 669670838, 1937259419, 425413602, 842014276, 12692426, 2044502122, 1119438707, 1190075270, 1450757861, 877666528, 630853853, 940321271, 512995887, 692931217, 1883625615, 1992425718
Offset: 0
a(29) = 65536^2 - 2 mod 2147483647 = 0.
-
p = 31; Mp = 2**p - 1
from itertools import accumulate
def f(anm1, _): return (anm1**2 - 2) % Mp
print(list(accumulate([4]*30, f))) # Michael S. Branicky, Apr 14 2021
A331038
Residues of the Lucas-Lehmer primality test for M(127) = 2^127 - 1.
Original entry on oeis.org
3, 7, 47, 2207, 4870847, 23725150497407, 562882766124611619513723647, 9932388036497706472820043948129789713, 102423269049837077051675109560558766898, 7949236499829405891753012242872011683, 119093374737774941856311333667076322210
Offset: 0
Showing 1-8 of 8 results.
Comments