A005733 Least k such that binomial(k,n) has n or more distinct prime factors.
2, 4, 9, 10, 22, 26, 40, 50, 54, 55, 78, 115, 123, 154, 155, 209, 288, 220, 221, 292, 301, 378, 494, 494, 551, 715, 670, 786, 805, 803, 1079, 966, 1190, 1222, 1274, 1274, 1276, 1771, 1836, 1807, 1834, 2147, 2263, 2519, 2519, 3021, 3306, 3306, 3427, 3441, 3445
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Ernst S. Selmer, On the number of prime divisors of a binomial coefficient, Math. Scand. 39 (1976), no. 2, 271-281.
Programs
-
Mathematica
Table[n=k; b=1; While[n++; b=b*n/(n-k); Length[FactorInteger[b]]
T. D. Noe, Apr 05 2007 *) lk[n_]:=Module[{k=n+1},While[PrimeNu[Binomial[k,n]] Harvey P. Dale, May 13 2018 *)
Extensions
Edited by T. D. Noe, Apr 05 2007
Comments