A129235 a(n) = 2*sigma(n) - tau(n), where tau(n) is the number of divisors of n (A000005) and sigma(n) is the sum of divisors of n (A000203).
1, 4, 6, 11, 10, 20, 14, 26, 23, 32, 22, 50, 26, 44, 44, 57, 34, 72, 38, 78, 60, 68, 46, 112, 59, 80, 76, 106, 58, 136, 62, 120, 92, 104, 92, 173, 74, 116, 108, 172, 82, 184, 86, 162, 150, 140, 94, 238, 111, 180, 140, 190, 106, 232, 140, 232, 156, 176, 118, 324, 122, 188
Offset: 1
Keywords
Examples
a(4) = 2*sigma(4) - tau(4) = 2*7 - 3 = 11.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Maple
with(numtheory): seq(2*sigma(n)-tau(n),n=1..75); # Emeric Deutsch, Apr 17 2007 G:=sum(z^k*(k-(k-1)*z^k)/(1-z^k)^2,k=1..100): Gser:=series(G,z=0,80): seq(coeff(Gser,z,n),n=1..75); # Emeric Deutsch, Apr 17 2007
-
Mathematica
a[n_] := DivisorSum[2n, If[EvenQ[#], #-1, 0]&]; Array[a, 70] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *) Table[2*DivisorSigma[1,n]-DivisorSigma[0,n],{n,80}] (* Harvey P. Dale, Aug 07 2022 *)
-
PARI
a(n)=sumdiv(2*n,d, if(d%2==0, d-1, 0 ) ); /* Joerg Arndt, Oct 07 2012 */
-
PARI
a(n) = 2*sigma(n)-numdiv(n); \\ Altug Alkan, Mar 18 2018
Formula
G.f.: Sum_{k>=1} z^k*(k-(k-1)*z^k)/(1-z^k)^2. - Emeric Deutsch, Apr 17 2007
G.f.: Sum_{n>=1} x^n*(1+x^n)/(1-x^n)^2. - Joerg Arndt, May 25 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2-1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018
Extensions
Edited by Emeric Deutsch, Apr 17 2007
Comments