A129246 Iterated sum of divisors array A[k,n] = k-th iterate of sigma(n), by upward antidiagonals.
1, 1, 3, 1, 4, 4, 1, 7, 7, 7, 1, 8, 8, 8, 6, 1, 15, 15, 15, 12, 12, 1, 24, 24, 24, 28, 28, 8, 1, 60, 60, 60, 56, 56, 15, 15, 1, 168, 168, 168, 120, 120, 24, 24, 13, 1, 480, 480, 480, 360, 360, 60, 60, 14, 18, 1, 1512, 1512, 1512, 1170, 1170, 168, 168, 24, 39, 12, 1, 4800, 4800
Offset: 1
Examples
Array begins: k / sigma(...sigma(n)..) nested k deep. 1.|.1...3...4....7....6....12....8....15...13....18... 2.|.1...4...7....8...12....28...15....24...14....39... 3.|.1...7...8...15...28....56...24....60...24....56... 4.|.1...8..15...24...56...120...60...168...60...120... 5.|.1..15..24...60..120...360..168...480..168...360... 6.|.1..24..60..168..360..1170..480..1512..480..1170... 7.|.1..60.168..480.1170..3276.1512..4800.1512..3276... 8.|.1.168.480.1512.3276.10192.4800.15748.4800.10192...
Links
- Robert Israel, Table of n, a(n) for n = 1..10011 (first 142 antidiagonals, flattened)
Crossrefs
Programs
-
Maple
A129246 := proc(k,n) option remember ; if k= 1 then numtheory[sigma](n); else A129246(k-1,numtheory[sigma](n)) ; fi ; end: for d from 1 to 13 do for n from 1 to d do printf("%d, ",A129246(d+1-n,n)) ; od: od: # R. J. Mathar, Oct 09 2007
-
Mathematica
T[n_, k_] := T[n, k] = If[n == 1, DivisorSigma[1, k], DivisorSigma[1, T[n-1, k]]]; Table[T[d-k+1, k], {d, 1, 13}, {k, 1, d}] // Flatten (* Jean-François Alcover, Sep 23 2022, after R. J. Mathar, except that T(n,k) replaces the unusual A(k,n) *)
Formula
A[k,n] = sigma^k(n), where sigma^k denotes functional iteration.
Extensions
More terms from R. J. Mathar, Oct 09 2007