cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A056637 a(n) is the least prime of class n-, according to the Erdős-Selfridge classification of primes.

Original entry on oeis.org

2, 11, 23, 47, 283, 719, 1439, 2879, 34549, 138197, 1266767, 14920303, 36449279, 377982107, 1432349099, 22111003847, 110874748763
Offset: 1

Views

Author

Robert G. Wilson v, Jan 31 2001

Keywords

Comments

A prime p is in class 1- if p-1 has no prime factor larger than 3. If p-1 has other prime factors, p is in class (c+1)-, where c- is the largest class of its prime factors. See also A005109.
1432349099 < a(16) <= 25782283783.
a(18) <= 619108107719, a(19) <= 19811459447009, a(20) <= 152772264735359. These upper limits can be found by generating class (n+1)- primes from a list of n- class primes; if the latter is sufficiently complete, one can deduce that there is no smaller (n+1)- prime. - M. F. Hasler, Apr 05 2007

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; NextPrime[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; a = Table[0, {15}]; a[[1]] = 2; k = 5; Do[c = ClassMinusNbr[ k]; If[ a[[c]] == 0, a[[c]] = k]; k = NextPrime[k], {n, 3, 7223000}]; a

Formula

a(n+1) >= 2*a(n)+1, since a(n+1)-1 is even and must have a factor of class n- which is odd (n>1) and >= a(n). a(n+1) <= min { p = 2*k*a(n)+1 | k=1,2,3... such that p is prime }, since a(n) is a prime of class n-. - M. F. Hasler, Apr 05 2007

Extensions

Extended by Robert G. Wilson v, Mar 20 2003
More terms from Don Reble, Apr 11 2003
a(16) and a(17) from M. F. Hasler, Apr 21 2007

A090896 a(n) = sigma^n(n), where sigma^n denotes functional iteration.

Original entry on oeis.org

1, 4, 8, 24, 120, 1170, 1512, 15748, 15748, 61440, 196584, 1572840, 1098240, 15605760, 50328576, 7074432, 355532800, 2143289344, 13815410400, 224319234048, 33541980160, 109760857440, 1468475386560, 33151875434496, 1415960985600, 1510712608204800
Offset: 1

Views

Author

Gabriel Cunningham (gcasey(AT)mit.edu), Feb 25 2004

Keywords

Comments

a(8) = a(9). Are there any other numbers m, n such that a(m) = a(n)? a(16) < a(15); a(25) < a(24). How often is a(n+1) < a(n)?
a(88) = a(89), a(108) = a(109) and a(124) = a(125). - Seiichi Manyama, May 08 2021

Examples

			a(3) = sigma^3(3) = sigma^2(4) = sigma(7) = 8
		

Crossrefs

Main diagonal of A129246.

Programs

  • Maple
    a:= n-> (numtheory[sigma]@@n)(n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    a[n_] := Nest[DivisorSigma[1, #]&, n, n];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 30 2025 *)
  • PARI
    a(n) = my(k=sigma(n)); for(n=2, n, k=sigma(k)); k; \\ Seiichi Manyama, May 08 2021

A175837 (2n-1)-abundant numbers.

Original entry on oeis.org

12, 18, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

A number k is (2n-1)-abundant if sum_{d|k, d 2*k-1, a specialization of the definition in A175522.
Adding 2k-1 on both sides of the condition yields the equivalent condition A129246(k) > 2*(2k-1).
Adding 2k-1 on both sides also yields sum_{d|k} (2*d-1) > 2*(2k-1), equivalent to 2*sum_{d|k}d - tau(k) > 2*(2k-1) or sigma(k) > 2k-1+tau(k)/2, equivalent to A033880(k) > tau(k)/2-1.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := DivisorSum[n, 2#-1&, # 2n-1; Select[Range[252], aQ] (* Amiram Eldar, Feb 18 2019 *)

Formula

A175837 = { n | A033880(n) > A000005(n)/2-1 }.

Extensions

More terms from Amiram Eldar, Feb 18 2019

A173430 Last of consecutive coprime iterations of sum-of-divisors function.

Original entry on oeis.org

1, 15, 15, 15, 6, 6, 15, 15, 14, 10, 12, 12, 14, 14, 15, 104, 18, 18, 20, 20, 104, 22, 24, 24, 104, 26, 40, 28, 30, 30, 104, 104, 33, 34, 48, 91, 38, 38, 56, 40, 42, 42, 44, 44, 45, 46, 48, 48, 80, 255, 51, 52, 54, 54, 72, 56, 80, 58, 60, 60, 62, 62, 104, 255, 84, 66, 68, 68
Offset: 1

Views

Author

Walter Nissen, Feb 18 2010

Keywords

Examples

			Calculating sum-of-divisors ( ... sum-of-divisors ( sum-of-divisors ( 4 ) ) ... ) the iterates are 4, 7, 8, 15, 24, ... .
The initial, consecutive, pairwise, coprime iterates are 4, 7, 8, 15, so a(4) = 15 .
Here sigma ( 4 ) = 7, sigma ( sigma ( 4 ) ) = sigma ( 7 ) = 8, etc.
		

References

  • Oystein Ore, Number Theory and Its History, 1988, Dover Publications, ISBN 0486656209, pp. 88-96.

Crossrefs

Cf. A129246 and the references there, A019294, A019295, A000203, A051027, A019284, A019277.

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{k = n}, While[CoprimeQ[k, (s = DivisorSigma[1, k])], k = s]; k]; Array[a, 68] (* Amiram Eldar, Sep 02 2019 *)

A173431 Count of consecutive coprime iterations of sum-of-divisors function.

Original entry on oeis.org

1, 6, 5, 4, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 1, 5, 2, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 2, 1, 4, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 4, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 5, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Walter Nissen, Feb 18 2010

Keywords

Comments

The last of these iterates is the value in A173430.

Examples

			Calculating sum-of-divisors ( ... sum-of-divisors ( sum-of-divisors ( 7 ) ) ... ) the iterates are 7, 8, 15, 24, ... .
The initial, consecutive, pairwise, coprime iterates are 7, 8, 15, and there are 3 of these, so a(7) = 3.
Here sigma ( 7 ) = 8, sigma ( sigma ( 7 ) ) = sigma ( 8 ) = 15, etc.
		

References

  • Graeme L. Cohen and Herman J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
  • Oystein Ore, Number Theory and Its History, 1988, Dover Publications, ISBN 0486656209, pp. 88-96.

Crossrefs

Cf. A173430, A129246 and the references there, A019294, A019295, A000203, A051027, A019284, A019277.

Programs

  • PARI
    a(n)=my(t,s);if(n==1,1,while(1,s++;t=sigma(n);if(gcd(t,n)==1,n=t,return(s)))) \\ Charles R Greathouse IV, Feb 06 2012
Showing 1-5 of 5 results.