A129271 Number of labeled n-node connected graphs with at most one cycle.
1, 1, 1, 4, 31, 347, 4956, 85102, 1698712, 38562309, 980107840, 27559801736, 849285938304, 28459975589311, 1030366840792576, 40079074477640850, 1666985134587145216, 73827334760713500233, 3468746291121007607808, 172335499299097826575564, 9027150377126199463936000
Offset: 0
Examples
a(4) = 16 + 3*3 = 31. From _Gus Wiseman_, Feb 19 2024: (Start) The a(0) = 1 through a(3) = 4 graph edge sets: {} . {{1,2}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1,2},{1,3},{2,3}} (End)
References
- J. Riordan, An Introduction to Combinatorial Analysis, Dover, 2002, p. 2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- Wikipedia, PseudoForest.
Crossrefs
Programs
-
Maple
a := n -> `if`(n=0,1,((n-1)*exp(n)*GAMMA(n-1,n)+n^(n-2)*(3-n))/2): seq(simplify(a(n)),n=0..16); # Peter Luschny, Jan 18 2016
-
Mathematica
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[ Log[1/(1-t)]/2+t/2-3t^2/4+1,{x,0,nn}],x] (* Geoffrey Critzer, Mar 23 2013 *)
-
PARI
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + t/2 - 3*t^2/4 + 1))} \\ Andrew Howroyd, Nov 07 2019
Formula
a(0) = 1, for n >=1, a(n) = A000272(n) + A057500(n) = n^{n-2} + (n-1)(n-2)/2Sum_{r=1..n-2}( (n-3)!/(n-2-r)! )n^(n-2-r)
E.g.f.: log(1/(1-T(x)))/2 + T(x)/2 - 3*T(x)^2/4 + 1, where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Mar 23 2013
a(n) = ((n-1)*e^n*GAMMA(n-1,n)+n^(n-2)*(3-n))/2 for n>=1. - Peter Luschny, Jan 18 2016
Extensions
Terms a(17) and beyond from Andrew Howroyd, Nov 07 2019
Comments