cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129276 Triangle, read by rows, where T(n,k) is the coefficient of q^(nk-k) in the squared q-factorial of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 8, 8, 1, 1, 42, 106, 42, 1, 1, 241, 1558, 1558, 241, 1, 1, 1444, 23589, 53612, 23589, 1444, 1, 1, 8867, 360499, 1747433, 1747433, 360499, 8867, 1, 1, 55320, 5530445, 54794622, 111482424, 54794622, 5530445, 55320, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2007

Keywords

Comments

Dual triangle is A129274.
Central terms form a bisection of A127728.

Examples

			Definition of q-factorial of n:
faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1.
Obtain row 4 from coefficients in the squared q-factorial of 4:
faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2
= (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2;
the resulting coefficients of q are:
[(1), 6, 19, (42), 71, 96, (106), 96, 71, (42), 19, 6, (1)],
where the terms enclosed in parenthesis form row 4.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 8, 8, 1;
1, 42, 106, 42, 1;
1, 241, 1558, 1558, 241, 1;
1, 1444, 23589, 53612, 23589, 1444, 1;
1, 8867, 360499, 1747433, 1747433, 360499, 8867, 1;
1, 55320, 5530445, 54794622, 111482424, 54794622, 5530445, 55320, 1; ...
		

Crossrefs

Cf. A129277 (column 1), A129278 (column 2); A127728 (central terms), related triangles: A129274, A128564, A008302 (Mahonian numbers).

Programs

  • Mathematica
    faq[n_, q_] := Product[(1-q^k)/(1-q), {k, 1, n}]; t[0, 0] = t[1, 0] = t[1, 1] = 1; t[n_, k_] := SeriesCoefficient[faq[n, q]^2, {q, 0, (n-1)*k}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 26 2013 *)
  • PARI
    T(n,k)=if(n==0,1,polcoeff(prod(i=1,n,(1-x^i)/(1-x))^2,(n-1)*k))

Formula

T(n,k) = [q^(nk-k)] Product_{i=1..n} { (1-q^i)/(1-q) }^2 for n>0, with T(0,0)=1.
Row sums = (n!)^2/(n-1) for n>=2.