A129276 Triangle, read by rows, where T(n,k) is the coefficient of q^(nk-k) in the squared q-factorial of n.
1, 1, 1, 1, 2, 1, 1, 8, 8, 1, 1, 42, 106, 42, 1, 1, 241, 1558, 1558, 241, 1, 1, 1444, 23589, 53612, 23589, 1444, 1, 1, 8867, 360499, 1747433, 1747433, 360499, 8867, 1, 1, 55320, 5530445, 54794622, 111482424, 54794622, 5530445, 55320, 1
Offset: 0
Examples
Definition of q-factorial of n: faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1. Obtain row 4 from coefficients in the squared q-factorial of 4: faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2 = (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2; the resulting coefficients of q are: [(1), 6, 19, (42), 71, 96, (106), 96, 71, (42), 19, 6, (1)], where the terms enclosed in parenthesis form row 4. Triangle begins: 1; 1, 1; 1, 2, 1; 1, 8, 8, 1; 1, 42, 106, 42, 1; 1, 241, 1558, 1558, 241, 1; 1, 1444, 23589, 53612, 23589, 1444, 1; 1, 8867, 360499, 1747433, 1747433, 360499, 8867, 1; 1, 55320, 5530445, 54794622, 111482424, 54794622, 5530445, 55320, 1; ...
Links
- Eric Weisstein's World of Mathematics, q-Factorial.
Crossrefs
Programs
-
Mathematica
faq[n_, q_] := Product[(1-q^k)/(1-q), {k, 1, n}]; t[0, 0] = t[1, 0] = t[1, 1] = 1; t[n_, k_] := SeriesCoefficient[faq[n, q]^2, {q, 0, (n-1)*k}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 26 2013 *)
-
PARI
T(n,k)=if(n==0,1,polcoeff(prod(i=1,n,(1-x^i)/(1-x))^2,(n-1)*k))
Formula
T(n,k) = [q^(nk-k)] Product_{i=1..n} { (1-q^i)/(1-q) }^2 for n>0, with T(0,0)=1.
Row sums = (n!)^2/(n-1) for n>=2.
Comments