A129303 Expansion of eta(q^2)^3 * eta(q^5)^2 * eta(q^10) / eta(q)^2 in powers of q.
1, 2, 2, 4, 5, 4, 6, 8, 7, 10, 12, 8, 12, 12, 10, 16, 16, 14, 20, 20, 12, 24, 22, 16, 25, 24, 20, 24, 30, 20, 32, 32, 24, 32, 30, 28, 36, 40, 24, 40, 42, 24, 42, 48, 35, 44, 46, 32, 43, 50, 32, 48, 52, 40, 60, 48, 40, 60, 60, 40, 62, 64, 42, 64, 60, 48, 66, 64
Offset: 1
Examples
G.f. = q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 4*q^6 + 6*q^7 + 8*q^8 + 7*q^9 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
- Shaun Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328; ResearchGate link. See p. 318, Th. 4.1.
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, DivisorSum[ n, n/# KroneckerSymbol[ 20, #] &]]; (* Michael Somos, Jul 12 2012 *) a[ n_] := SeriesCoefficient[ (1/16) (EllipticTheta[ 2, 0, q]^3 EllipticTheta[ 2, 0, q^5] - EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^5]^3), {q, 0, 2 n}]; (* Michael Somos, Jul 12 2012 *) nmax = 100; Rest[CoefficientList[Series[x * Product[(1 - x^k) * (1 + x^(5*k)) * (1 + x^k)^3 * (1 - x^(5*k))^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 08 2015 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, n/d * kronecker( 20, d)))};
-
PARI
{a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; f = kronecker( 20, p); (p^(e+1) - f^(e+1)) / (p - f) ))};
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5 + A)^2 * eta(x^10 + A) / eta(x + A)^2, n))};
Formula
Expansion of q * psi(q)^3 * psi(q^5) - q^2 * psi(q) * psi(q^5)^3 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Jul 12 2012
Euler transform of period 10 sequence [ 2, -1, 2, -1, 0, -1, 2, -1, 2, -4, ...].
a(n) is multiplicative with a(p^e) = p^e if p = 2 or 5, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3, 7 (mod 10).
G.f.: Sum_{k>0} Kronecker(20, k) * x^k / (1 - x^k)^2.
G.f.: x * Product_{k>0} (1 - x^k) * (1 + x^(5*k)) * (1 + x^k)^3 * (1 - x^(5*k))^3.
a(2*n) = a(n). a(2*n + 1) = A134080(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^2/(5*sqrt(5)) = 0.882764... . - Amiram Eldar, Dec 22 2023
Comments