A129323 Second column of PE^2.
0, 1, 4, 18, 88, 470, 2724, 17010, 113712, 809262, 6101820, 48540778, 405935688, 3557404838, 32577733972, 310987560930, 3087723669600, 31823217868318, 339845199259500, 3754422961010522, 42843681016834680, 504339820818380694
Offset: 0
Crossrefs
Programs
-
Maple
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129323 := proc(n) A078937(n+1,1) ; end: seq(A129323(n),n=0..23) ; # R. J. Mathar, May 30 2008
-
Mathematica
Table[Sum[BellB[n, 2], {i, 0, n}], {n, -1, 20}] (* Zerinvary Lajos, Jul 16 2009 *)
Formula
PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,2] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,2]
Extensions
More terms from R. J. Mathar, May 30 2008
Comments