A129324 Third column of PE^2.
0, 0, 1, 6, 36, 220, 1410, 9534, 68040, 511704, 4046310, 33560010, 291244668, 2638581972, 24901833866, 244333004790, 2487900487440, 26245651191600, 286408960814862, 3228529392965250, 37544229610105220, 449858650676764140
Offset: 0
Crossrefs
Programs
-
Maple
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129324 := proc(n) A078937(n+1,2) ; end: seq(A129324(n),n=0..23) ; # R. J. Mathar, May 30 2008
-
Mathematica
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]]; A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}]; a[n_] := A078937[n + 1, 2]; a /@ Range[0, 21] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
Formula
PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,3]; with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,3].
E.g.f.: (x^2/2) * exp(2 * (exp(x) - 1)). - Ilya Gutkovskiy, Jul 11 2020
Extensions
More terms from R. J. Mathar, May 30 2008
Comments