A129327 Second column of PE^3.
0, 1, 6, 36, 228, 1545, 11196, 86457, 708504, 6136830, 55976430, 535904259, 5369146272, 56145107577, 611336534802, 6916529431620, 81152874393168, 985767316792449, 12376996566040980, 160399065135692073
Offset: 0
Crossrefs
Programs
-
Maple
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129327 := proc(n) A078938(n+1,1) ; end: seq(A129327(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
Mathematica
Table[Sum[BellB[n, 3], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
Formula
PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,2]
Extensions
More terms from R. J. Mathar, May 30 2008
Comments