A129334 Triangle T(n,k) read by rows: inverse of the matrix PE = exp(P)/exp(1) given in A011971.
1, -1, 1, 0, -2, 1, 1, 0, -3, 1, 1, 4, 0, -4, 1, -2, 5, 10, 0, -5, 1, -9, -12, 15, 20, 0, -6, 1, -9, -63, -42, 35, 35, 0, -7, 1, 50, -72, -252, -112, 70, 56, 0, -8, 1, 267, 450, -324, -756, -252, 126, 84, 0, -9, 1, 413, 2670, 2250, -1080, -1890, -504, 210, 120, 0, -10, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] -1, 1; [2] 0, -2, 1; [3] 1, 0, -3, 1; [4] 1, 4, 0, -4, 1; [5] -2, 5, 10, 0, -5, 1; [6] -9, -12, 15, 20, 0, -6, 1; [7] -9, -63, -42, 35, 35, 0, -7, 1; [8] 50, -72, -252, -112, 70, 56, 0, -8, 1; [9] 267, 450, -324, -756, -252, 126, 84, 0, -9, 1;
Links
- S. de Wannemacker, T. Laffey and R. Osburn, On a conjecture of Wilf, arXiv:math/0608085 [math.NT], 2006-2007.
Crossrefs
Programs
-
Maple
P := proc(n,x) option remember; if n=0 then 1 else x*P(n-1, x) - P(n-1, x+1) fi end: aRow := n -> seq(coeff(P(n, x), x, k), k = 0..n): seq(aRow(n), n = 0..10); # Peter Luschny, Apr 15 2022
Formula
Let P be the lower-triangular Pascal-matrix, PE = exp(P-I) a matrix-exponential in exact integer arithmetic (or PE = lim exp(P)/exp(1) as limit of the exponential) then A = PE^-1 and a(n) = A(n, read sequentially). - Gottfried Helms, Apr 08 2007
T(n, k) = Sum_{j=0..n} (-1)^(j-k)*A094816(j, k)*Stirling2(n, j). - Mélika Tebni, Apr 15 2022
Extensions
Edited by Ralf Stephan, May 12 2007
Comments