A129344 a(n) is the number of powers of 2 that have n decimal digits.
4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3
Offset: 1
Examples
a(1) is 4 because there are 4 one-digit powers of 2: 1, 2, 4, 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Transpose[ Select[Table[{n, 2^n}, {n, 0, 310}], IntegerDigits[ #[[2]]][[1]] == 1 &]][[1]][[k]] - Transpose[ Select[Table[{n, 2^n}, {n, 0, 310}], IntegerDigits[ #[[2]]][[1]] == 1 &]][[1]][[k - 1]], {k, 2, 94}] Join[{4}, Differences @ Table[Floor[n*Log2[10]], {n, 100}]] (* Amiram Eldar, Apr 09 2021 *)
-
PARI
a(n) = my(k=0, i=0); while(#Str(2^k)!=n, k++); while(#Str(2^k)==n, i++; k++); i \\ Felix Fröhlich, Jan 19 2016
-
Python
def A129344(n): return -(m:=5**(n-1)).bit_length()+(5*m).bit_length()+1 if n>1 else 4 # Chai Wah Wu, Sep 08 2024
Formula
For n>1, a(n) = floor(n*L)-floor((n-1)*L) where L = log(10)/log(2). - Andrew Woods, Jun 10 2013
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log_2(10) (A020862). - Amiram Eldar, Apr 09 2021
Comments