cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129344 a(n) is the number of powers of 2 that have n decimal digits.

Original entry on oeis.org

4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3
Offset: 1

Views

Author

Tanya Khovanova, May 28 2007

Keywords

Comments

Ignoring the first term, first differences of A066343. - Andrew Woods, Jun 10 2013

Examples

			a(1) is 4 because there are 4 one-digit powers of 2: 1, 2, 4, 8.
		

Crossrefs

First differences of A067497.

Programs

  • Mathematica
    Table[Transpose[ Select[Table[{n, 2^n}, {n, 0, 310}], IntegerDigits[ #[[2]]][[1]] == 1 &]][[1]][[k]] - Transpose[ Select[Table[{n, 2^n}, {n, 0, 310}], IntegerDigits[ #[[2]]][[1]] == 1 &]][[1]][[k - 1]], {k, 2, 94}]
    Join[{4}, Differences @ Table[Floor[n*Log2[10]], {n, 100}]] (* Amiram Eldar, Apr 09 2021 *)
  • PARI
    a(n) = my(k=0, i=0); while(#Str(2^k)!=n, k++); while(#Str(2^k)==n, i++; k++); i \\ Felix Fröhlich, Jan 19 2016
    
  • Python
    def A129344(n): return -(m:=5**(n-1)).bit_length()+(5*m).bit_length()+1 if n>1 else 4 # Chai Wah Wu, Sep 08 2024

Formula

For n>1, a(n) = floor(n*L)-floor((n-1)*L) where L = log(10)/log(2). - Andrew Woods, Jun 10 2013
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log_2(10) (A020862). - Amiram Eldar, Apr 09 2021