cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129367 Triangle T(n, k) = A002415(n-k+3)*A002415(k+3), read by rows.

Original entry on oeis.org

36, 120, 120, 300, 400, 300, 630, 1000, 1000, 630, 1176, 2100, 2500, 2100, 1176, 2016, 3920, 5250, 5250, 3920, 2016, 3240, 6720, 9800, 11025, 9800, 6720, 3240, 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950, 7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 25 2008

Keywords

Examples

			Triangle begins as:
    36;
   120,   120;
   300,   400,   300;
   630,  1000,  1000,   630;
  1176,  2100,  2500,  2100,  1176;
  2016,  3920,  5250,  5250,  3920,  2016;
  3240,  6720,  9800, 11025,  9800,  6720,  3240;
  4950, 10800, 16800, 20580, 20580, 16800, 10800,  4950;
  7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260;
		

Crossrefs

Programs

  • Magma
    [Binomial((n-k+3)^2,2)*Binomial((k+3)^2,2)/36: k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    A129367[n_, k_]:= Binomial[(n-k+3)^2, 2]*Binomial[(k+3)^2, 2]/36;
    Table[A129367[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A129367(n,k): return binomial((n-k+3)^2,2)*binomial((k+3)^2,2)/36
    flatten([[A129367(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2024

Formula

T(n,k) = A002415(n-k+3)*A002415(k+3), where A002415(n) = n^2*(n^2-1)/12.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 31 2024