A129367 Triangle T(n, k) = A002415(n-k+3)*A002415(k+3), read by rows.
36, 120, 120, 300, 400, 300, 630, 1000, 1000, 630, 1176, 2100, 2500, 2100, 1176, 2016, 3920, 5250, 5250, 3920, 2016, 3240, 6720, 9800, 11025, 9800, 6720, 3240, 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950, 7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260
Offset: 0
Examples
Triangle begins as: 36; 120, 120; 300, 400, 300; 630, 1000, 1000, 630; 1176, 2100, 2500, 2100, 1176; 2016, 3920, 5250, 5250, 3920, 2016; 3240, 6720, 9800, 11025, 9800, 6720, 3240; 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950; 7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[Binomial((n-k+3)^2,2)*Binomial((k+3)^2,2)/36: k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 31 2024
-
Mathematica
A129367[n_, k_]:= Binomial[(n-k+3)^2, 2]*Binomial[(k+3)^2, 2]/36; Table[A129367[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A129367(n,k): return binomial((n-k+3)^2,2)*binomial((k+3)^2,2)/36 flatten([[A129367(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2024
Formula
Extensions
Edited by G. C. Greubel, Jan 31 2024