cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129370 a(n) = n^2 - (n-1)^2*(1 - (-1)^n)/8.

Original entry on oeis.org

0, 1, 4, 8, 16, 21, 36, 40, 64, 65, 100, 96, 144, 133, 196, 176, 256, 225, 324, 280, 400, 341, 484, 408, 576, 481, 676, 560, 784, 645, 900, 736, 1024, 833, 1156, 936, 1296, 1045, 1444, 1160, 1600, 1281, 1764, 1408
Offset: 0

Views

Author

Paul Barry, Apr 11 2007

Keywords

Comments

Partial sums are A129371.

Crossrefs

Cf. A000567 (odd bisection), A016742 (even bisection), A129371.

Programs

  • Magma
    [n^2 -(n-1)^2*(n mod 2)/4: n in [0..60]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    Table[n^2-(n-1)^2 (1-(-1)^n)/8,{n,0,50}] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    a(n)=n^2-(n-1)^2*(1-(-1)^n)/8 \\ Charles R Greathouse IV, Sep 28 2015
    
  • SageMath
    [n^2 -(n-1)^2*(n%2)/4 for n in range(61)] # G. C. Greubel, Jan 31 2024

Formula

a(n) = (1/8)*( (7*n^2 + 2*n - 1) + (-1)^n*(n-1)^2 ).
G.f.: x*(1 + 4*x + 5*x^2 + 4*x^3)/(1-x^2)^3.
E.g.f.: (1/4)*( x*(5+4*x)*cosh(x) - (1-4*x-3*x^2)*sinh(x) ). - G. C. Greubel, Jan 31 2024