cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129380 Partial sums of A129379.

Original entry on oeis.org

1, 3, 6, 12, 48, 336, 3696, 59136, 1300992, 37728768, 1395964416, 64214363136, 3596004335616, 240932290486272, 19033650948415488, 1751095887254224896, 185616164048947838976, 22459555849922688516096
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 14 2007

Keywords

Crossrefs

Programs

  • Magma
    A129380:= func< n | n le 2 select 2*n-1 else (3/2^(n-2))*(&*[k^2-k+2: k in [0..n-2]])  >;
    [A129380(n): n in [1..40]]; // G. C. Greubel, Feb 03 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<4, Binomial[n+1,2], (n^2-5*n+8)*a[n-1]/2];
    Table[a[n], {n,40}] (* G. C. Greubel, Feb 03 2024 *)
    Round[Flatten[{{1, 3}, Table[(3*2^(3-n) * Cosh[Sqrt[7]*Pi/2] * Gamma[n - 3/2 - I*Sqrt[7]/2] * Gamma[n - 3/2 + I*Sqrt[7]/2])/Pi, {n, 3, 20}]}]] (* Vaclav Kotesovec, Feb 03 2024 *)
  • SageMath
    def A129380(n): return 2*n-1 if n<3 else 3*product(j^2-j+2 for j in range(n-1))//2^(n-2)
    [A129380(n) for n in range(1, 41)] # G. C. Greubel, Feb 03 2024

Formula

a(n) = A129379(n+1)/A000217(n-2) for n>2.
a(n) = a(n-1) + A129379(n) for n > 1, a(1) = 1.
From G. C. Greubel, Feb 03 2024: (Start)
a(n) = (6/2^(n-3))*|Pochhammer((3+i*sqrt(7))/2, n-3)|^2, for n > 2.
a(n) = (3/2^(n-3))*Product_{k=0..n-2} (k^2 - k + 2), for n > 2.
a(n) = (1/2)*(n^2 - 5*n + 8)*a(n-1), with a(1) = 1, a(2) = 3, a(3) = 6. (End)
From Vaclav Kotesovec, Feb 03 2024: (Start)
For n>=3, a(n) = 3 * cosh(sqrt(7)*Pi/2) * 2^(3-n) * Gamma(n - 3/2 - i*sqrt(7)/2) * Gamma(n - 3/2 + i*sqrt(7)/2)/Pi, where i is the imaginary unit.
a(n) ~ 3 * cosh(sqrt(7)*Pi/2) * n^(2*n-4) / (2^(n-4) * exp(2*n)). (End)