cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129383 Expansion of g(x) - x*g(x^2), where g(x) is the g.f. of A001405.

Original entry on oeis.org

1, 0, 2, 2, 6, 8, 20, 32, 70, 120, 252, 452, 924, 1696, 3432, 6400, 12870, 24240, 48620, 92252, 184756, 352464, 705432, 1351616, 2704156, 5199376, 10400600, 20056584, 40116600, 77555328, 155117520, 300533760, 601080390, 1166790240
Offset: 0

Views

Author

Paul Barry, Apr 12 2007

Keywords

Comments

Partial sums are A129384.

Crossrefs

Programs

  • Magma
    A129383:= func< n | Binomial(n,Floor(n/2)) - (n mod 2)*Binomial(Floor((n-1)/2),Floor((n-1)/4))  >;
    [A129383(n): n in [0..40]]; // G. C. Greubel, Feb 03 2024
    
  • Mathematica
    A129383[n_]:= With[{B=Binomial,F=Floor}, B[n,F[n/2]] - Mod[n,2]*B[(n- 1)/2, F[(n-1)/4]]];
    Table[A129383[n], {n,0,40}] (* G. C. Greubel, Feb 03 2024 *)
  • SageMath
    def A129383(n): return binomial(n,n//2) - (n%2)*binomial((n-1)/2,(n-1)//4)
    [A129383(n) for n in range(41)] # G. C. Greubel, Feb 03 2024

Formula

G.f.: 2/(1-2*x+sqrt(1-4*x^2)) - 2*x/(1-2*x^2+sqrt(1-4*x^4)).
a(n) = binomial(n,floor(n/2)) - (1/2)*(1-(-1)^n)*binomial((n-1)/2, floor((n-1)/4)).