A129383 Expansion of g(x) - x*g(x^2), where g(x) is the g.f. of A001405.
1, 0, 2, 2, 6, 8, 20, 32, 70, 120, 252, 452, 924, 1696, 3432, 6400, 12870, 24240, 48620, 92252, 184756, 352464, 705432, 1351616, 2704156, 5199376, 10400600, 20056584, 40116600, 77555328, 155117520, 300533760, 601080390, 1166790240
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
A129383:= func< n | Binomial(n,Floor(n/2)) - (n mod 2)*Binomial(Floor((n-1)/2),Floor((n-1)/4)) >; [A129383(n): n in [0..40]]; // G. C. Greubel, Feb 03 2024
-
Mathematica
A129383[n_]:= With[{B=Binomial,F=Floor}, B[n,F[n/2]] - Mod[n,2]*B[(n- 1)/2, F[(n-1)/4]]]; Table[A129383[n], {n,0,40}] (* G. C. Greubel, Feb 03 2024 *)
-
SageMath
def A129383(n): return binomial(n,n//2) - (n%2)*binomial((n-1)/2,(n-1)//4) [A129383(n) for n in range(41)] # G. C. Greubel, Feb 03 2024
Formula
G.f.: 2/(1-2*x+sqrt(1-4*x^2)) - 2*x/(1-2*x^2+sqrt(1-4*x^4)).
a(n) = binomial(n,floor(n/2)) - (1/2)*(1-(-1)^n)*binomial((n-1)/2, floor((n-1)/4)).
Comments