cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A129384 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, floor((n-k)/2)).

Original entry on oeis.org

1, 1, 3, 5, 11, 19, 39, 71, 141, 261, 513, 965, 1889, 3585, 7017, 13417, 26287, 50527, 99147, 191399, 376155, 728619, 1434051, 2785667, 5489823, 10689199, 21089799, 41146383, 81262983, 158818311, 313935831, 614469591, 1215549981
Offset: 0

Views

Author

Paul Barry, Apr 12 2007

Keywords

Comments

Partial sums of A129383.

Crossrefs

Programs

  • Magma
    A129384:= func< n | (&+[Binomial(n-k, Floor((n-k)/2)): k in [0..Floor(n/2)]])  >;
    [A129384(n): n in [0..40]]; // G. C. Greubel, Feb 03 2024
    
  • Mathematica
    Table[Sum[Binomial[n-k,Floor[(n-k)/2]],{k,0,Floor[n/2]}],{n,0,40}] (* Harvey P. Dale, Aug 21 2021 *)
  • SageMath
    def A129384(n): return sum(binomial(n-k,(n-k)//2) for k in range((n+2)//2))
    [A129384(n) for n in range(41)] # G. C. Greubel, Feb 03 2024

Formula

G.f.: (g(x) - x*g(x^2))/(1-x), where g(x) is the g.f. of A001405.
a(n) = Sum_{k=floor((n+1)/2)..n} binomial(k, floor(k/2)).
Showing 1-1 of 1 results.