A129385 a(n) is the smallest root m of the least perfect power q (= m^k) such that n+q is an even semiprime, or -1 if no such q exists.
2, 3, 2, 1, -1, 1, 2, 3, -1, 1, 2, 3, -1, 1, 2, 7, -1, 3, 2, 3, -1, 1, 2, 11, -1, 1, 2, 19, -1, 3, 2, 3, -1, 1, 2, 3, -1, 1, 2, 7, -1, 3, 2, 7, -1, 1, 2, 3, -1, 3, 2, 7, -1, 3, 2, 3, -1, 1, 2, 3, -1, 1, 2, 19, -1, 3, 2, 3, -1, 5, 2, 3, -1, 1, 2, 19, -1, 3, 2, 3, -1, 1, 2, 3, -1, 1, 2, 11, -1, 5, 2, 3, -1, 1, 2, 3, -1, 3, 2, 23, -1, 5, 2
Offset: 0
Keywords
Examples
n=0: A001597(2) = 4 = 2^2 is the least perfect power q such that 0+q is an even semiprime; 0+4 = 4 = 2*2, hence a(0) = 2. n=11: A001597(7) = 27 = 3^3 is the least perfect power q such that 11+q is an even semiprime; 11+27 = 38 = 2*19, hence a(11) = 3. n=14: A001597(3) = 8 = 2^3 is the least perfect power q such that 14+q is an even semiprime; 14+8 = 22 = 2*11, hence a(14) = 2. n=27: A001597(1722) = 2476099 = 19^5 is the least perfect power q such that 27+q is an even semiprime; 27+2476099 = 2476126 = 2*1238063 and 1238063 is prime, hence a(27) = 19.
Crossrefs
Programs
-
Magma
PP:=[1] cat [ n: n in [2..2500000] | IsPower(n) ]; prootesp:=function(n); if exists(k) {x: x in PP | IsEven(n+x) and IsPrime((n+x) div 2) } then y:=k; else return -1; end if; if y eq 1 then return 1; end if; _, b:=IsPower(y); return b; end function; [ prootesp(n): n in [0..100] ];
Comments