cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129400 Number of walks of length n on one 60-degree wedge of the equilateral triangular lattice. The walk can go along the walls of the wedge, but cannot cross the walls.

Original entry on oeis.org

1, 2, 8, 32, 144, 672, 3264, 16256, 82688, 427520, 2240512, 11874304, 63533056, 342712320, 1861779456, 10176823296, 55932813312, 308907737088, 1713473323008, 9541666209792, 53322206674944, 298943898451968
Offset: 0

Views

Author

Rebecca Xiaoxi Nie (rebecca.nie(AT)utoronto.ca), May 28 2007

Keywords

Comments

Counts colored Motzkin paths where each of the steps has two possible colors. Series reversion of x/(1+2x+4x^2). - Paul Barry, Sep 04 2007
Hankel transform is 4^C(n+1,2). - Paul Barry, Oct 01 2009

Examples

			a(1) = 2 because we can go east or northeast.
		

Crossrefs

Programs

  • Maple
    countwalk2 := proc (i::integer, j::integer, n::integer) option remember: if n < 0 or j < 0 or i < j then 0 elif n = 0 and i = 0 and j = 0 then 1 elif n = 0 then 0 else procname(i-2, j, n-1)+procname(i+2, j, n-1)+procname(i-1, j+1, n-1)+procname(i+1, j+1, n-1)+procname(i+1, j-1, n-1)+procname(i-1, j-1, n-1) end if end proc: counter2 := proc (n::nonnegint) option remember: add(add(countwalk2(i, j, n), i = 0 .. 2*n), j = 0 .. n) end proc:
    g := n -> simplify(2^n*GegenbauerC(n, -n-1, -1/2)/(n+1)):
    seq(g(n), n=0..21); # Peter Luschny, May 09 2016
    T := proc(n, k) option remember;
    if n < 0 or k < 0 then 0
    elif n = 0 then binomial(2*k, k)/(k+1)
    else 2*(T(n-1, k+1) - T(n-1, k)) fi end:
    a := n -> T(n, 1): seq(a(n), n=0..21); # Peter Luschny, Aug 23 2017
  • Mathematica
    CoefficientList[Series[1/(8*x^2)*(1-2*x-Sqrt[1-4*x-12*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

a(n) = 2^n*A001006(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*2^(n-2k)*2^k*2^k where C(n) = A000108(n). - Paul Barry, Sep 04 2007
G.f.: 1/(1-2x-4x^2/(1-2x-4x^2/(1-2x-4x^2/(1-2x-4x^2/(1-.... (continued fraction). - Paul Barry, Oct 01 2009
G.f.: (1/(8*x^2)) * (1-2*x-(1-4*x-12*x^2)^(1/2)). - Mark van Hoeij, Nov 02 2009
E.g.f.: a(n) = n! * [x^n] exp(2*x)*BesselI(1,4*x)/(2*x). - Peter Luschny, Aug 25 2012
Recurrence: (n+2)*a(n) = 2*(2*n+1)*a(n-1) + 12*(n-1)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3*sqrt(3)*6^n/(2*sqrt(Pi)*n^(3/2)) . - Vaclav Kotesovec, Oct 20 2012
a(n) = 2^n*GegenbauerC(n, -n-1, -1/2)/(n+1). - Peter Luschny, May 09 2016
G.f.: A(x) = 1/(1 + 2*x)*c(2*x/(1 + 2*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A005572. - Peter Bala, Aug 18 2021