A201641 Triangle read by rows, T(n,k) for 0<=k<=n, generalizes the colored Motzkin paths of A129400.
1, 2, 1, 8, 4, 1, 32, 20, 6, 1, 144, 96, 36, 8, 1, 672, 480, 200, 56, 10, 1, 3264, 2432, 1104, 352, 80, 12, 1, 16256, 12544, 6048, 2128, 560, 108, 14, 1, 82688, 65536, 33152, 12544, 3680, 832, 140, 16, 1, 427520, 346368, 182016, 72960, 23232, 5904, 1176, 176, 18, 1
Offset: 0
Examples
Triangle begins as: [0] [1] [1] [2, 1] [2] [8, 4, 1] [3] [32, 20, 6, 1] [4] [144, 96, 36, 8, 1] [5] [672, 480, 200, 56, 10, 1] [6] [3264, 2432, 1104, 352, 80, 12, 1] [7] [16256, 12544, 6048, 2128, 560, 108, 14, 1] [8] [82688, 65536, 33152, 12544, 3680, 832, 140, 16, 1]
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A129400.
Programs
-
Magma
[[k eq n select 1 else 2^(n-k)*((k+1)/(n+1))*(&+[(-1)^j* Binomial(n+1,j)*Binomial(2*n-k-3*j, n-k-3*j): j in [0..Floor((n-k)/3)]]) :k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
-
Maple
T := (n, k) -> 2^n*add(binomial(n,j)*(binomial(n-j,j+k) - binomial(n-j, j+k+2)) *2^(-k), j=0..n); seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Dec 31 2019
-
Mathematica
T[n_, k_]:= If[k==n, 1, 2^(n-k)*((k+1)/(n+1))*Sum[(-1)^j*Binomial[n+1,j]* Binomial[2*n-k-3*j, n-k-3*j], {j, 0, Floor[(n-k)/3]}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Apr 04 2019 *)
-
Maxima
T(n,k):=(k+1)/(n+1)*2^(n-k)*sum((-1)^j*binomial(n+1,j)*binomial(2*n-k-3*j,n-k-3*j),j,0,floor((n-k)/3)); /* Vladimir Kruchinin, Apr 06 2019 */
-
PARI
{T(n,k) = if(k==n, 1, 2^(n-k)*((k+1)/(n+1))*sum(j=0, floor((n-k)/3), (-1)^j*binomial(n+1,j)*binomial(2*n-k-3*j, n-k-3*j)))}; for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 04 2019
-
Sage
def A201641_triangle(dim): M = matrix(ZZ,dim,dim) for n in range(dim): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1]+2*M[n-1,k]+4*M[n-1,k+1] return M A201641_triangle(9)
-
Sage
@CachedFunction def T(n, k): if k==n: return 1 else: return 2^(n-k)*((k+1)/(n+1))*sum((-1)^j*binomial(n+1,j)* binomial(2*n-k-3*j, n-k-3*j) for j in (0..floor((n-k)/3))) [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
Formula
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + 4*T(n-1,k+1).
T(n,k) = ((k+1)/(n+1))*2^(n-k)*Sum_{j=0..floor((n-k)/3)} (-1)^j*C(n+1,j) *C(2*n-k-3*j,n-k-3*j). - Vladimir Kruchinin, Apr 06 2019
T(n,k) = 2^n*Sum_{j=0..n} C(n,j)*(C(n-j, j+k) - C(n-j, j+k+2))*2^(-k). - Peter Luschny, Dec 31 2019
Comments