A330799
Evaluation of the Motzkin polynomials at 1/2 and normalized with 2^n.
Original entry on oeis.org
1, 3, 13, 59, 285, 1419, 7245, 37659, 198589, 1059371, 5705517, 30976571, 169338781, 931239243, 5147825421, 28587660123, 159406327677, 892113040491, 5009160335085, 28210229053563, 159304938535773, 901845743050635, 5117144607546573, 29096321095698843, 165765778648482621
Offset: 0
-
m:=30;
R:=PowerSeriesRing(Rationals(), m+2);
A330799:= func< n | Coefficient(R!( 2/(1-4*x+Sqrt((1-6*x)*(1+2*x))) ), n) >;
[A330799(n): n in [0..m]]; // G. C. Greubel, Sep 14 2023
-
a := proc(n) option remember; if n < 3 then return [1, 3, 13][n+1] fi;
(-84*(n - 2)*a(n-3) - 2*(8*n + 5)*a(n-2) + (11*n + 5)*a(n-1))/(n + 1) end:
seq(a(n), n=0..24);
# Alternative:
gf := 2/(1 - 4*x + sqrt((1 - 6*x)*(2*x + 1))):
ser := series(gf, x, 30): seq(coeff(ser,x,n), n=0..24);
# Or:
series((x^2+x)/(7*x^2+4*x+1), x, 30): gfun:-seriestoseries(%, 'revogf'):
convert(%, polynom) / x: seq(coeff(%, x, n), n=0..24);
-
With[{C = Binomial}, A064189[n_, k_] := Sum[C[n, j]* (C[n-j, j+k] - C[n-j, j+k+2]), {j, 0, n}]];
a[n_] := 2^n*Sum[A064189[n, k]/2^k, {k, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 25 2022 *)
(* Second program *)
A330799[n_]:= Coefficient[Series[2/(1-4*x+Sqrt[(1-6*x)*(1+2*x)]), {x, 0,50}], x, n]; Table[A330799[n], {n,0,30}] (* G. C. Greubel, Sep 14 2023 *)
-
R. = PowerSeriesRing(QQ)
f = (x^2 + x)/(7*x^2 + 4*x+1)
f.reverse().shift(-1).list()
A330797
Evaluation of the Stirling cycle polynomials at -1/2 and normalized with (-2)^n.
Original entry on oeis.org
1, 1, -1, 3, -15, 105, -945, 10395, -135135, 2027025, -34459425, 654729075, -13749310575, 316234143225, -7905853580625, 213458046676875, -6190283353629375, 191898783962510625, -6332659870762850625, 221643095476699771875, -8200794532637891559375, 319830986772877770815625
Offset: 0
The equivalent for Stirling2 is
A009235.
-
m:=30;
R:=PowerSeriesRing(Rationals(), m+2);
A330797:= func< n | Coefficient(R!(Laplace( Sqrt(1+2*x) )), n) >;
[A330797(n): n in [0..m]]; // G. C. Greubel, Sep 14 2023
-
a := n -> ((-2)^(n-1)*GAMMA(n-1/2))/sqrt(Pi): seq(a(n), n=1..9);
# Alternative:
arec := proc(n) option remember: if n = 0 then 1 else
(3 - 2*n)*arec(n-1) fi end: seq(arec(n), n=0..20);
# Or:
gf := (1+2*x)^(1/2); ser := series(gf, x, 24);
seq(n!*coeff(ser, x, n), n=0..20);
-
a[n_]:= (-2)^n*Sum[Abs[StirlingS1[n, k]]*(-1/2)^k, {k, 0, n}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 19 2021 *)
Table[(-2)^(n-1)*Pochhammer[1/2, n-1], {n,0,30}] (* G. C. Greubel, Sep 14 2023 *)
-
def A330797(n): return (-2)^(n-1)*rising_factorial(1/2, n-1)
[A330797(n) for n in (0..20)]
A330802
Evaluation of the Big-Schröder polynomials at 1/2 and normalized with 2^n.
Original entry on oeis.org
1, 5, 33, 253, 2121, 18853, 174609, 1667021, 16290969, 162171445, 1638732129, 16765758429, 173325794409, 1807840791237, 19001320087473, 201050792435949, 2139811906460985, 22892988893079637, 246061004607915777, 2655768423781296893, 28771902274699214601
Offset: 0
-
a := proc(n) option remember; if n < 3 then return [1, 5, 33][n+1] fi;
((24 - 12*n)*a(n-3) + (32*n - 10)*a(n-2) + (9*n - 9)*a(n-1))/(n+1) end:
seq(a(n), n=0..20);
# Alternative:
gf := 2/(1 - 4*x + sqrt(1 + 4*(x - 3)*x)):
ser := series(gf, x, 24):
seq(coeff(ser, x, n), n=0..20);
# Or:
series((x - x^2)/(3*x^2 + 4*x + 1), x, 24):
gfun:-seriestoseries(%, 'revogf'):
convert(%, polynom) / x: seq(coeff(%, x, n), n=0..20);
-
A080247[n_, k_] := (k+1)*Sum[2^m*Binomial[n+1, m]*Binomial[n-k-1, n-k-m], {m, 0, n-k}]/(n+1);
a[n_] := 2^n*Sum[A080247[n, k]/2^k , {k, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 22 2023 *)
-
N=20; x='x+O('x^N); Vec(2/(1-4*x+sqrt(1+4*(x-3)*x))) \\ Seiichi Manyama, Feb 03 2020
-
R. = PowerSeriesRing(QQ)
f = (x - x^2)/(3*x^2 + 4*x + 1)
f.reverse().shift(-1).list()
A330803
Evaluation of the Big-Schröder polynomials at -1/2 and normalized with (-2)^n.
Original entry on oeis.org
1, -3, 17, -123, 1001, -8739, 79969, -756939, 7349657, -72798003, 732681489, -7471545435, 77031538377, -801616570947, 8408819677377, -88821190791915, 943928491520249, -10085451034660947, 108275140773938545, -1167408859459660923, 12635538801834255401
Offset: 0
-
a := proc(n) option remember; if n < 3 then return [1, -3, 17][n+1] fi;
((8 - 4*n)*a(n-3) + (30 - 24*n)*a(n-2) + (17 - 37*n)*a(n-1))/(3*n + 3) end:
seq(a(n), n=0..20);
# Alternative:
gf := 2/(1 + sqrt(1 + 4*x*(x + 3))):
ser := series(gf, x, 24):
seq(coeff(ser, x, n), n=0..20);
# Or:
series((3*x^2 + x)/(1 - x^2), x, 24):
gfun:-seriestoseries(%, 'revogf'):
convert(%, polynom) / x: seq(coeff(%, x, n), n=0..20);
-
N=20; x='x+O('x^N); Vec(2/(1+sqrt(1+4*x*(x+3)))) \\ Seiichi Manyama, Feb 03 2020
-
R. = PowerSeriesRing(QQ)
f = (3*x^2 + x)/(1 - x^2)
f.reverse().shift(-1).list()
Showing 1-4 of 4 results.