cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123022 a(n) = n!*b(n) where b(n) = (n-4)*b(n-2)/(n*(n-1)) and b(0) = b(1) = 1.

Original entry on oeis.org

1, 1, -2, -1, 0, -1, 0, -3, 0, -15, 0, -105, 0, -945, 0, -10395, 0, -135135, 0, -2027025, 0, -34459425, 0, -654729075, 0, -13749310575, 0, -316234143225, 0, -7905853580625, 0, -213458046676875, 0, -6190283353629375, 0, -191898783962510625, 0, -6332659870762850625, 0
Offset: 0

Views

Author

Roger L. Bagula, Sep 24 2006

Keywords

References

  • Richard Bronson, Schaum's Outline of Modern Introductory Differential Equations, MacGraw-Hill, New York,1973, page 99, solved problem 19.1.

Crossrefs

Cf. A330797.

Programs

  • Magma
    [n le 2 select 1 else (n-5)*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 11 2021
    
  • Maple
    b[0]:=1: b[1]:=1: for n from 2 to 40 do b[n]:=(n-4)*b[n-2]/(n*(n-1)) od: seq(n!*b[n], n=0..40);
  • Mathematica
    b[n_]:= b[n]= If[n<2, 1, (n-4)*b[n-2]/(n*(n-1))]; a[n_]:= n!*b[n];
    Table[a[n], {n, 0, 30}]
  • Sage
    def a(n): return 1 if (n<2) else (n-4)*a(n-2)
    [a(n) for n in (0..30)] # G. C. Greubel, Jul 11 2021

Formula

G.f.: (1 - G(0))*x^4/(1+x) +1 +x -2*x^2 -x^3, where G(k)= 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
From G. C. Greubel, Jul 10 2021: (Start)
a(2*n) = (-2)^n*[n<2], for n >= 0.
a(2*n+1) = 2^n*Pochhammer(n, 1/2)/(1-2*n), for n >= 0.
a(2*n+1) = (-1)^n * A330797(n).
D-finite with recurrence a(n) = (n-4)*a(n-2) with a(0) = a(1) = 1.
G.f.: 1 + x - 2*x^2 - sqrt(Pi/2)*x^2*exp(-1/(2*x^2))*erfi(1/(sqrt(2)*x)). (End)

Extensions

Edited by N. J. A. Sloane, Oct 01 2006 and Nov 24 2006

A373175 Expansion of e.g.f. exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^2.

Original entry on oeis.org

1, 3, 8, 25, 87, 386, 1663, 11313, 39560, 717067, -2408199, 128675438, -2009225567, 53624676795, -1282589050168, 35660396328721, -1032462831852297, 32302377782200418, -1070227545188815745, 37651172275242136857, -1398665563931458389304, 54757245858874447661683
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n!SeriesCoefficient[Exp[Sqrt[2x+1]-1]/(2-Sqrt[2x+1])^2,{x,0,n}]; Array[a,22,0]
  • PARI
    my(x = 'x+O('x^30)); Vec(serlaplace(exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^2)) \\ Michel Marcus, May 27 2024

A373176 Expansion of e.g.f. 2*exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^3.

Original entry on oeis.org

2, 8, 30, 122, 548, 2802, 15638, 100760, 661242, 5519558, 36021212, 495019758, 944742290, 96695115272, -1151063332242, 46492769525882, -1177828529162332, 39211350154011570, -1272035779868081338, 45289997660347946648, -1679496857400789295638, 65976928289858329056518
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n!SeriesCoefficient[2Exp[Sqrt[2x+1]-1]/(2-Sqrt[2x+1])^3,{x,0,n}]; Array[a,22,0]
Showing 1-3 of 3 results.