A129439 An analog of Pascal's triangle: T(n,k) = A092143(n)/(A092143(n-k)*A092143(k)), 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 8, 12, 8, 1, 1, 5, 20, 20, 5, 1, 1, 36, 90, 240, 90, 36, 1, 1, 7, 126, 210, 210, 126, 7, 1, 1, 64, 224, 2688, 1680, 2688, 224, 64, 1, 1, 27, 864, 2016, 9072, 9072, 2016, 864, 27, 1, 1, 100, 1350, 28800, 25200, 181440, 25200, 28800, 1350, 100, 1
Offset: 0
Examples
Triangle starts 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 8, 12, 8, 1; 1, 5, 20, 20, 5, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A092143:= func< n |n eq 0 select 1 else (&*[Factorial(Floor(n/j)): j in [1..n]]) >; A129439:= func< n,k | A092143(n)/(A092143(k)*A092143(n-k)) >; [A129439(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Feb 06 2024
-
Mathematica
A092143[n_]:= Product[Floor[n/j]!, {j,n}]; A129439[n_, k_]:= A092143[n]/(A092143[n-k]*A092143[k]); Table[A129439[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 06 2024 *)
-
SageMath
def A092143(n): return product(factorial(n//j) for j in range(1,n+1)) def A129439(n,k): return A092143(n)//(A092143(n-k)*A092143(k)) flatten([[A129439(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Feb 06 2024
Formula
T(n,k) = Product_{j=1..n} floor(n/j)!/((Product_{j=1..n-k} floor((n-k)/j)!)*(Product_{j=1..k} floor(k/j)!)).
T(n, 1) = A007955(n).
T(n, n-k) = T(n, k). - G. C. Greubel, Feb 06 2024
Comments