A129453 An analog of Pascal's triangle based on A092287. T(n,k) = A092287(n)/(A092287(n-k)*A092287(k)), 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 16, 24, 16, 1, 1, 5, 40, 40, 5, 1, 1, 864, 2160, 11520, 2160, 864, 1, 1, 7, 3024, 5040, 5040, 3024, 7, 1, 1, 2048, 7168, 2064384, 645120, 2064384, 7168, 2048, 1, 1, 729, 746496, 1741824, 94058496, 94058496, 1741824, 746496, 729, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 16, 24, 16, 1; 1, 5, 40, 40, 5, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A092287:= func< n | n eq 0 select 1 else (&*[(&*[GCD(j,k): k in [1..n]]): j in [1..n]]) >; A129453:= func< n,k | A092287(n)/(A092287(n-k)*A092287(k)) >; [A129453(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2024
-
Mathematica
A092287[n_]:= Product[GCD[j,k], {j,n}, {k,n}]; A129453[n_, k_]:= A092287[n]/(A092287[k]*A092287[n-k]); Table[A129453[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2024 *)
-
SageMath
def A092287(n): return product(product( gcd(j,k) for k in range(1,n+1)) for j in range(1,n+1)) def A129453(n,k): return A092287(n)/(A092287(n-k)*A092287(k)) flatten([[A129453(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 07 2024
Formula
T(n, k) = (Product_{i=1..n} Product_{j=1..n} gcd(i,j)) / ( (Product_{i=1..n-k} Product_{j=1..n-k} gcd(i,j)) * ( Product_{i=1..k} Product_{j=1..k} gcd(i,j)) ), note that empty products equal to 1.
T(n, n-k) = T(n, k). - G. C. Greubel, Feb 07 2024
Comments