A129459 Slowest increasing sequence that starts with 0 and has property that multiplying two consecutive terms gives a number which shares at least one digit with at least one of the terms.
0, 1, 2, 6, 8, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 53, 55, 57, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A375211.
Programs
-
Maple
f:= proc(n) local Ln, Lk,k; Ln:= convert(convert(n,base,10),set); for k from n+1 do Lk:= convert(convert(k,base,10),set) union Ln; if convert(convert(n*k,base,10),set) intersect Lk <> {} then return k fi od end proc: Res:= 0: x:= 0: for i from 1 to 100 do x:= f(x); Res:= Res,x od: Res; # Robert Israel, Feb 06 2025
-
Mathematica
a = {0}; For[n = 1, n <= 100, n++, If[Length[Intersection[IntegerDigits[n*a[[ -1]]], Union[IntegerDigits[n], IntegerDigits[a[[ -1]]]]]] != 0, AppendTo[a, n]]]; a
Comments