cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375211 Complement of A129459.

Original entry on oeis.org

3, 4, 5, 7, 9, 16, 18, 19, 23, 25, 33, 34, 38, 43, 45, 48, 49, 54, 56, 58, 59, 66, 77, 79, 84, 86, 93, 144, 149, 155, 157, 166, 176, 189, 195, 223, 233, 238, 243, 258, 266, 293, 295, 304, 308, 313, 314, 323, 333, 334, 344, 376, 378, 388, 393, 404, 423, 433, 435, 443, 448, 457, 459, 566, 576, 579
Offset: 1

Views

Author

Robert Israel, Feb 06 2025

Keywords

Comments

Given positive integer x, let y be the greatest integer < x that is not in the sequence (and thus is a member of A129459). Then x is in the sequence iff neither x nor y share any decimal digit with x * y.
For each k >= 1, at least one of (10^k - 1)/3 = 3...33 and (10^k + 2)/3 = 3...34 is in the sequence, as their product is (10^(2*k) + 10^k - 2)/9 = 1..12...2. Similarly, at least one of (2*10^k - 2)/3 = 6...66 and (2*10^k + 1)/3 = 6...67 is in the sequence. In particular, the sequence is infinite.

Examples

			a(6) = 16 is a term because 15 is the greatest integer < 16 that is not in the sequence, and neither 16 nor 15 shares a digit with 16 * 15 = 240.
		

Crossrefs

Cf. A129459.

Programs

  • Maple
    f:= proc(n) local Ln, Lk,k;
      Ln:= convert(convert(n,base,10),set);
      for k from n+1 do
         Lk:= convert(convert(k,base,10),set) union Ln;
         if convert(convert(n*k,base,10),set) intersect Lk <> {} then return k fi
      od
    end proc:
    R:= NULL: x:= 0: count:= 0:
    while count < 100 do
      y:= f(x);
      count:= count + y - x - 1;
      R:= R, $(x+1)..(y-1);
      x:= y
    od:
    R;

A129460 Third column (m=2) of triangle A129065.

Original entry on oeis.org

1, 10, 156, 3696, 125280, 5780160, 349090560, 26760222720, 2540101939200, 292579402752000, 40213832085504000, 6502800338141184000, 1222285449585328128000, 264279998869470904320000
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

See A129065 for the M. Bruschi et al. reference.

Crossrefs

Cf. A129065, A129459 (m=1), A129461 (m=3).

Programs

  • Magma
    function T(n,k) // T = A129065
      if k lt 0 or k gt n then return 0;
      elif n eq 0 then return 1;
      else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
      end if;
    end function;
    A129460:= func< n | T(n+2, 2) >;
    [A129460(n): n in [0..20]]; // G. C. Greubel, Feb 08 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T=A129065 *)
    A129460[n_]:= T[n+2,2];
    Table[A129460[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A129065
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
    def A129460(n): return T(n+2,2)
    [A129460(n) for n in range(41)] # G. C. Greubel, Feb 08 2024

Formula

a(n) = A129065(n+2, 2), n >= 0.

A129513 Slowest increasing sequence that starts with 2 and has property that multiplying two consecutive terms gives a number which does not share a digit with either of the two terms.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 42, 43, 44, 45, 46, 63, 66, 67, 73, 76, 77, 78, 79, 84, 88, 113, 183, 219, 232, 233, 236, 333, 334, 335, 522, 577, 579, 589, 698, 738, 803, 819, 858, 859, 899, 3033, 3037, 3127, 12792, 27117, 29662, 29669, 29777, 33953, 34409, 34474
Offset: 1

Views

Author

Eric Angelini, May 29 2007

Keywords

Comments

Terms computed by Stefan Steinerberger. Is the sequence finite?

Crossrefs

Cf. A129459.
Showing 1-3 of 3 results.