cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005113 Smallest prime in class n (sometimes written n+) according to the Erdős-Selfridge classification of primes.

Original entry on oeis.org

2, 13, 37, 73, 1021, 2917, 15013, 49681, 532801, 1065601, 8524807, 68198461, 545587687, 1704961513, 23869461181, 288310406533
Offset: 1

Views

Author

Keywords

Comments

A prime p is in class 1 if (p+1)'s largest prime factor is 2 or 3. If (p+1) has other prime factors, p's class is one more than the largest class of its prime factors. See also A005105.
John W. Layman observes that for n=10..13, the ratios r(n)= a(n)/a(n-1) are increasingly close to an integer, being 1.9999981, 7.99999906, 8.00000059 and 7.999999985.
Layman's observation is a consequence of a(n+1) = m*a(n)-1 for (n,m)=(1,7),(3,2),(4,14),(9,2),(10,8),(12,8),(14,14), while a(12) = 8 a(11)+5 is a coincidence which does not fit into that scheme. This relationship is not unusual since any N+ prime p is by definition such that p+1 = m*q where q is a (N-1)+ prime and m = (p+1)/q must be even since p,q are odd (except for q=2, allowing the odd m=7 for n=1 above) and the least N+ prime has good chances of having q equal to the least (N-1)+ prime. - M. F. Hasler, Apr 09 2007
a(n+1) >= 2*a(n)-1 since a(n+1)+1 = p*q with p of class n+ (thus >= a(n) and odd) and thus q >= 2 (even and positive). a(n+1) <= min { p = 2*k*a(n)-1 | k=1,2,3,... such that p is prime }. - M. F. Hasler, Apr 02 2007
a(17) <= 1833174628057, with equality if 916587314029 is the 10th 16+ prime; a(18) <= 3666349256113, with equality if a(17) = 1833174628057; a(19) <= 65994286610033, with equality if 41431295033731 is the third 18+ prime; a(20) <= 764276710625653, with equality if 382138355312827 is the third 19+ prime. - M. F. Hasler, Apr 09 2007

Examples

			1553 is in class 4 because 1553+1 = 2*3*7*37; 7 is in class 1 and 37 is in class 3. 37 is in class 3 because 37+1 = 2*19 and 19 is in class 2. 19 is in class 2 because 19+1 = 2*2*5 and 5 is in class 1. 5 is in class 1 because 5+1=2*3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; NextPrime[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; a = Table[0, {15}]; a[[1]] = 2; k = 5; Do[c = ClassPlusNbr[ k]; If[ a[[c]] == 0, a[[c]] = k]; k = NextPrime[k], {n, 1, 28700000}]; a
  • PARI
    checkclass(n,p)={ n=factor(n+1)[,1]; n[#n] <= 3 && return(1); (#p <= 1 || n[#n] < p[#p]) && return(2); n[1]=p[#p]; p=vecextract(p,"^-1"); forstep( i=#n,2,-1, n[i] < n[1] && break; checkclass(n[i],p) > #p && return(2+#p)) }
    A005113(n,p,a=[])={ while( #a #a, p=nextprime(p+1)); a=concat(a,p); p=a[#a]*2-2); a } \\ A005113(11) takes < 10 sec @ 2 GHz in 2007; less than 2.5 sec @ 2 GHz in 2013. \\ M. F. Hasler, Apr 02 2007
    
  • PARI
    class(n, s=+1 /* for n+ class; -1 for n- class */)={ isprime(n) || return; (( n=factor(n+s)[,1] ) && n[ #n]>3 ) || return(1); vecsort( vector( #n,i,class( n[i],s )))[#n]+1 }
    someofnextclass( a, limit=0, s=0, b=[], p)={ if(!s,/* guess + or - */ s=( class(a[1]) && class(a[1])==class(a[2]) )*2-1 ); print("looking for primes of class ", 1+class( a[1], s), ["+","-"][1+(s<0)] ); for( i=1,#a, p=-s; until( p>=limit, until( isprime(p), p+=a[i]<<1 ); b=concat(b,p); if( !limit, limit=p)) ); vecsort(b) };
    c=A090468; for(i=15,20,c=someofnextclass(c,9e12);print("least prime of class ",i,"+ is <= ",c[1])) \\  M. F. Hasler, Apr 09 2007

Extensions

Extended through a(12) by Robert G. Wilson v
a(13) from John W. Layman
a(14) from Don Reble, Apr 11 2003
a(15) from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 17 2006
a(7) corrected by Tomás Oliveira e Silva, Oct 27 2006
a(16) calculated using A129475(n) up to n=19 by M. F. Hasler, Apr 16 2007
Edited by Max Alekseyev, Aug 17 2013

A129469 Least prime of Erdos-Selfridge class n+ in A129470.

Original entry on oeis.org

883, 3181, 15913, 2146141, 17227801, 456185017, 4960846573, 568124640697, 2273325467773, 145351829612377, 9302101084613641, 595332797734595317, 5813792718345189961, 1139502378775815768313, 166245781044286357673761
Offset: 3

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

The sequence starts at offset 3, since primes of class 1+ and 2+ have all prime factors (of p+1) of class 1+. Definitions imply that a(n) >= -1+2*A005113(n-1)*nextprime(1+A005113(n-1)). We have a(n) = -1+2*A005113(n-1)*p for all n<18, with p prime for n>3. This holds probably for all n.

Examples

			a(3) = 883 = -1+2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 2+.
a(4) = 3181 = -1+2*37*43 is a prime of class 4+ since 37 is of class 3+, but the largest divisor of 3181+1 is 43 which is only of class 2+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1]; if(n[ #n]<=3,1, for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129469={vector(#A005113-1,i,t=A005113[i+1]; t=[t,nextprime(t+1)-1,0];until( isprime( t[3] = -1+2*t[1]*t[2] ) & (f=factor( 1+t[3] )[,1]) & class(f[ #f],1)= i+1, print("Warning, crossed a prime of class >= ",i+1,"+, p=", t[2]); ); ); print(i+2," ",t[3]); t[3])}

A129470 Primes p such that the largest prime factor of p+1 has Erdős-Selfridge class+ < N-1 if p is of class N+.

Original entry on oeis.org

883, 1747, 2417, 2621, 3181, 3301, 3533, 3571, 3691, 3853, 4027, 4133, 4513, 4783, 4861, 4957, 5303, 5381, 5393, 5563, 5641, 5821, 6067, 6577, 6991, 7177, 7253, 7331, 8059, 8093, 8377, 8731, 8839, 8929, 8969, 9221, 9281, 9397, 9613, 9931
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

In practice the class+ of a prime p is most often given by 1 + the class of the largest prime factor of p+1; terms of this sequence are counterexamples to this "rule". Terms of this sequence are at least of class 3+, since primes of class 1+ and 2+ have all prime factors of p+1 of class 1+. Terms a(k) of this sequence are >= -1 + 2*A005113(N-1) * nextprime(A005113(N-1)), where N is the class of a(k).

Examples

			a(3) = 883 = -1 + 2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 1+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129470(n=100,p=1,a=[])={ local(f); while( #a 3, f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f,2,-1, f[i]=class( f[i] ); if( f[i] > f[ #f], a=concat(a,p); /*print(#a," ",p);*/ break))); a}

A129474 Primes of Erdos-Selfridge class 14+.

Original entry on oeis.org

1704961513, 7281416041, 7638227617, 9462536833, 11934730597, 13237911481, 13282423003, 13522629793, 13942983841, 14185279861, 16029089501, 16221987853, 17434233041, 18171787987, 19639505461, 20717555041
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

Primes of class r (or r+) are by definition the primes p for which p + 1 has all factors of a lower class < r, but at least one factor of class r - 1. See A005113 for more information.
a(1..149) calculated using A090468 up to 37.5e9, which gives A129474(150) > 75e9.

Examples

			a(1) = A005113[14] = 1704961513 = -1+2*852480757, where 852480757 = A090468[2]
		

Crossrefs

Programs

  • PARI
    class(n, s=1) = { if(!isprime(n),0, if(!(n=factor(n+s)[,1]) || n[ #n]<=3,1, for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1]))};
    nextclass(a,s=1,p,n=[])={if(!p,p=nextprime(a[ #a]+1)); print("producing primes of class ",1+class(a[1],s),["+","-"][1+(s<0)]," up to 2*",p); for(i=1,#a,for(k=1,p/a[i],if(isprime(2*k*a[i]-s),n=concat(n,2*k*a[i]-s))));vecsort(n)};
    A129474=nextclass(A090468,1)

Formula

{ a(n) } = { p = 2*m*A090468(k)-1 | k=1,2,3... and m=1,2,3... such that p is prime and m has no factor of class > 13+ }

A101253 a(n) = n-th prime of Erdős-Selfridge classification n+.

Original entry on oeis.org

2, 19, 113, 617, 1877, 8753, 52517, 255043, 1532173, 9287521, 48499459, 353653063, 2136716521, 18171787987, 111795382441
Offset: 1

Views

Author

Jonathan Vos Post, Dec 16 2004

Keywords

Comments

Diagonalization of the Erdős-Selfridge classification of primes n+. See A101231 for diagonalization of the Erdős-Selfridge classification of primes n-.

Examples

			a(1) = 2 because 2 is the first element of A005105.
a(2) = 19 because 19 is the 2nd element of A005106.
a(3) = 113 because 113 is the 3rd element of A005107.
a(4) = 617 because 617 is the 4th element of A005108.
a(5) = 1877 because 1877 is the 5th element of A081633.
a(6) = 8753 because 8753 is the 6th element of A081634.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Extensions

More terms from David Wasserman, Mar 26 2008
Showing 1-5 of 5 results.