cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129479 Triangle read by rows: A054523 * A097806 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 4, 0, 0, 1, 1, 4, 3, 1, 0, 1, 1, 6, 0, 0, 0, 0, 1, 1, 6, 2, 1, 1, 0, 0, 1, 1, 6, 2, 2, 0, 0, 0, 0, 1, 1, 8, 4, 0, 1, 1, 0, 0, 0, 1, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 4, 4, 2, 1, 1, 0, 0, 0, 0, 1, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 17 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  3, 1, 1, 1;
  4, 0, 0, 1, 1;
  4, 3, 1, 0, 1, 1;
  6, 0, 0, 0, 0, 1, 1;
  6, 2, 1, 1, 0, 0, 1, 1;
  ...
		

Crossrefs

Cf. A000010 (alternating row sums), A053158 (row sums).

Programs

  • Magma
    A054523:= func< n,k | n eq 1 select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >;
    A129479:= func< n,k | k le n-1 select A054523(n,k) + A054523(n,k+1) else 1 >;
    [A129479(n,k): k in [1..n], n in [1..16]]; // G. C. Greubel, Feb 11 2024
    
  • Mathematica
    A054523[n_, k_]:= If[n==1, 1, If[Divisible[n,k], EulerPhi[n/k], 0]];
    T[n_, k_]:= If[kA054523[n, j+k], {j,0,1}], 1];
    Table[T[n,k],{n,16},{k,n}]//Flatten (* G. C. Greubel, Feb 11 2024 *)
  • SageMath
    def A054523(n,k):
        if (k==n): return 1
        elif (n%k): return 0
        else: return euler_phi(n//k)
    def A129479(n, k):
        if k<0 or k>n: return 0
        elif k==n: return 1
        else: return A054523(n,k) + A054523(n,k+1)
    flatten([[A129479(n, k) for k in range(1,n+1)] for n in range(1,17)]) # G. C. Greubel, Feb 11 2024

Formula

Sum_{k=1..n} T(n, k) = A053158(n) (row sums).
T(n, 1) = A126246(n).
From G. C. Greubel, Feb 11 2024: (Start)
T(n, k) = A054523(n, k) + A054523(n, k+1) for k < n, otherwise 1.
T(2*n-1, n) = A019590(n).
T(2*n, n) = A054977(n).
T(2*n+1, n) = A000038(n).
T(3*n, n) = A063524(n-1).
T(3*n-2, n) = A183918(n+2).
Sum_{k=1..n} (-1)^(k-1) * T(n, k) = A000010(n). (End)