A129487 Unitary deficient numbers.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1
Examples
The sixth integer that exceeds the sum of its proper unitary divisors is 7. Hence a(6)=7.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a := proc(n) numtheory[divisors](n); select(d -> igcd(d,n/d)=1,%); `if`(add(i,i=%) < 2*n,n,NULL) end: # Peter Luschny, May 03 2009
-
Mathematica
UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];Select[Range[100],Plus@@UnitaryDivisors[ # ]-2#<0 &]
Comments