cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A034683 Unitary abundant numbers: numbers k such that usigma(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834
Offset: 1

Views

Author

Keywords

Comments

If a term n in the sequence ends in neither 0 nor 5, then 10*n is also in the sequence. - Lekraj Beedassy, Jun 11 2004
The lower asymptotic density of this sequence is larger than 1/18 = 0.0555... which is the density of its subsequence of numbers of the form 6*m where gcd(m, 6) = 1 and m > 1. Numerically, based on counts of terms below 10^n (A302993), it seems that this sequence has an asymptotic density which equals to about 0.070034... - Amiram Eldar, Feb 13 2021
The asymptotic density of this sequence is in the interval (0.0674, 0.1055) (Wall, 1970). - Amiram Eldar, Apr 18 2024
All the terms are nonpowerful numbers (A052485). For powerful numbers (A001694) k, usigma(k)/k < 15/Pi^2 = 1.519817... (A082020; the record values are attained at the squares of primorials, A061742). - Amiram Eldar, Jul 20 2024

References

  • C. Sung, Mathematical Buds, "Unitary Divisors", Chap. V, pp. 42-67, Ed. H. D. Ruderman, Mu Alpha Theta OK 1978.

Crossrefs

Subsequence of A005101.

Programs

  • Maple
    isA034683 := proc(n)
        is(A034448(n) > 2*n) ;
    end proc:
    for n from 1 do
        if isA034683(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    Select[Range[1000], usigma[#] > 2#&] (* Jean-François Alcover, Mar 23 2020, after Giovanni Resta in A034448 *)
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]) > 2*n;} \\ Amiram Eldar, Apr 18 2024

A129485 Odd unitary abundant numbers.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035
Offset: 1

Views

Author

Ant King, Apr 17 2007

Keywords

Comments

This sequence is different from A112643. The two sequences agree for the first 50 terms but differ thereafter. The exceptions, i.e. those odd unitary abundant numbers that are not squarefree ordinary abundant numbers, are in A129486.
22309287 is the smallest term not divisible by 5. 33426748355 is the smallest term not divisible by 3. - Donovan Johnson, May 15 2013
The numbers of terms not exceeding 10^k, for k = 5, 6, ..., are 34, 137, 1714, 16918, 181744, 1752337, 17290556, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00017... . - Amiram Eldar, Sep 02 2022

Examples

			The third odd unitary abundant number is 21945. Hence a(3) = 21945.
		

Crossrefs

Programs

  • Maple
    # see A034683 for the code of isA034683()
    isA129485 := proc(n)
        type(n,'odd') and isA034683(n) ;
    end proc:
    for n from 1 do
        if isA129485(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;Select[Range[1,10^5,2],sstar[ # ]># &]

Formula

This sequence contains the odd members of A034683. i.e. odd numbers with a positive unitary abundance (A129468).

A302574 Primitive unitary abundant numbers (definition 2): unitary abundant numbers (A034683) having no unitary abundant proper unitary divisor.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 420, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 660, 678, 726, 750, 762, 780, 786, 822, 834, 840, 894, 906, 924, 942, 978, 990, 1002, 1014, 1020, 1038, 1074
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2018

Keywords

Comments

The unitary analog of A091191.

Examples

			70 is primitive unitary abundant since it is unitary abundant (usigma(70) = 144 > 2*70), and all of its unitary divisors are unitary deficient. 210 is unitary abundant since usigma(210) = 576 > 2*210, but is not in this sequence since 70 is one of its unitary divisors, and 70 is unitary abundant.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; delta[n_] := usigma[n]-2n; udefQ[n_] := Module[{}, v=Most[Module[{d = Divisors[n]}, Select[ d, GCD[ #, n/# ] == 1 &]]]; u = Max[Map[delta,v]]; u<=0 ]; puaQ[n_] := delta[n] > 0 && udefQ[n]; Select[Range[10000],puaQ]

A129468 Unitary abundance of n.

Original entry on oeis.org

-1, -1, -2, -3, -4, 0, -6, -7, -8, -2, -10, -4, -12, -4, -6, -15, -16, -6, -18, -10, -10, -8, -22, -12, -24, -10, -26, -16, -28, 12, -30, -31, -18, -14, -22, -22, -36, -16, -22, -26, -40, 12, -42, -28, -30, -20, -46, -28, -48, -22, -30, -34, -52, -24
Offset: 1

Views

Author

Ant King, Apr 17 2007

Keywords

Comments

The values of n which generate negative elements of this sequence are in A129487, the values of n which generate the zeros of this sequence are in A002827 and the values of n which generate positive elements of this sequence are in A034683

Examples

			As the unitary divisors of 12 are 1, 3, 4 and 12, which sum to 20, then a(12) = 20 - 2*12 = -4.
		

Crossrefs

Programs

  • Maple
    A129468 := proc(n)
        A034448(n)-2*n ;
    end proc:
    seq(A129468(n),n=1..40) ; # R. J. Mathar, Nov 10 2014
  • Mathematica
    UnitaryDivisors[n_Integer?Positive] := Select[Divisors[n], GCD[ #,n/# ] == 1&]; sstar[n_] := Plus@@UnitaryDivisors[n] - n; sstar[ # ] - # &/@ Range[40]
    a[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - 2*n; a[1] = -1; Array[a, 100] (* Amiram Eldar, Apr 06 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]) - 2*n; } \\ Amiram Eldar, Apr 06 2024

Formula

a(n) = A034460(n) - n = A034448(n) - 2n.
From Amiram Eldar, Apr 06 2024: (Start)
a(A129487(n)) < 0.
a(A002827(n)) = 0.
a(A034683(n)) > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(2*zeta(3)) - 1 = -0.3157836111... . (End)

A097010 Numbers n such that zero is eventually reached when the map x -> A034460(x) is iterated, starting from x = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Comments

Numbers n for which A318880(n) = 0. - Antti Karttunen, Sep 23 2018
The sequence doesn't contain any numbers from attractor sets like A002827, A063991, A097024, A097030, etc, nor any number x such that the iteration of the map x -> A034460(x) would lead to such an attractor set (e.g., numbers in A097034 - A097037). - Antti Karttunen, Sep 24 2018, after the original author's example.

Crossrefs

Cf. A003062 (complement), A318880.
Differs from A129487 for the first time at n=51, as A129487(51) = 54, but that term is lacking here, as in this sequence a(51) = 55.

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x],Flatten[Position[GCD[di[x],Reverse[di[x]]],1]]]; asu[x_] :=Apply[Plus,ud[x]]-x;nsf[x_,ho_] :=NestList[asu,x,ho] Do[g=n;s=Last[NestList[asu,n,100]];If[Equal[s,0],Print[{n,s}]; ta=Append[ta,n]],{n,1,256}];ta = Delete[ta,1]
  • PARI
    up_to = 10000;
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A318880(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(1), mapput(visited, n, j)); n = A034460(n); if(!n,return(0))); };
    A097010list(up_to) = { my(v = vector(up_to), k=0, n=1); while(kA318880(n), k++; v[k] = n); n++); (v); };
    v097010 = A097010list(up_to);
    A097010(n) = v097010[n]; \\ Antti Karttunen, Sep 24 2018

Extensions

Edited by Antti Karttunen, Sep 24 2018

A302573 Primitive unitary abundant numbers (definition 1): unitary abundant numbers (A034683) all of whose proper unitary divisors are unitary deficient.

Original entry on oeis.org

70, 840, 924, 1092, 1386, 1428, 1430, 1596, 1638, 1870, 2002, 2090, 2142, 2210, 2394, 2470, 2530, 2970, 2990, 3190, 3230, 3410, 3510, 3770, 4030, 4070, 4510, 4730, 5170, 5390, 5830, 13860, 15015, 16380, 17160, 18480, 19635, 20020, 21420, 21840, 21945, 22440
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2018

Keywords

Comments

The unitary analog of A071395.
Prasad & Reddy proved that n is a primitive unitary abundant number if and only if 0 < usigma(n) - 2n < 2n/p^e, where p^e is the largest prime power that divides n.

Examples

			70 is primitive unitary abundant since it is unitary abundant (usigma(70) = 144 > 2*70), and all of its unitary divisors are unitary deficient. The smaller unitary abundant numbers, 30, 42, 66, are not primitive, since in each 6 is a unitary divisor, and 6 is not unitary deficient.
		

References

  • J. Sandor, D. S. Mitrinovic, and B. Crstici, Handbook of Number Theory, Vol. 1, Springer, 2006, p. 115.

Crossrefs

Programs

  • Mathematica
    maxPower[n_]:=Max[Power @@@ FactorInteger[n]];usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; d[n_]:=usigma[n]-2n; punQ[n_] := d[n]>0 && d[n]< 2n/maxPower[n]; Select[Range[1000], punQ]

A129486 Odd unitary abundant numbers that are not odd, squarefree, ordinary abundant numbers.

Original entry on oeis.org

195195, 333795, 416955, 1786785, 1996995, 2417415, 2807805, 3138135, 3318315, 3708705, 3798795, 4103715, 4339335, 4489485, 4789785, 4967655, 5120115, 5420415, 5552085, 5660655, 5731635, 6051045, 6111105, 6263565, 6342105, 6695535, 6771765, 6938295, 7000455, 7088235
Offset: 1

Views

Author

Ant King, Apr 17 2007

Keywords

Comments

The first 50 members of A129485 and A112643 are the same. However, the sequences differ thereafter and this sequence contains those integers that are included in A129485 but are not included in A112643.

Examples

			The third integer which is an odd unitary abundant number but is not an ordinary, squarefree abundant number is 416955. Hence a(3)=416955.
		

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[ n_Integer?Positive ] := Select[ Divisors[ n ], GCD[ #, n/# ] == 1 & ]; sstar[ n_ ] := Plus @@ UnitaryDivisors[ n ] - n; UnitaryAbundantNumberQ[ k_ ] := If[ sstar[ k ] > k, True, False ]; data1 = Select[ Range[ 1, 10^7, 2 ], UnitaryAbundantNumberQ[ # ] & ]; data2 = Select[ Range[ 1, 10^7, 2 ], DivisorSigma[ 1, # ] - 2 # > 0 && ! MoebiusMu[ # ] == 0 & ]; Complement[ data1, data2 ]
    uaQ[n_] := Module[{f = FactorInteger[n]}, Max[f[[;;,2]]] > 1 && Times@@(1 + Power @@@ f) > 2n]; Select[Range[3, 2*10^6, 2], uaQ] (* Amiram Eldar, May 13 2019 *)

Formula

The complement of A129485 and A112643.

Extensions

More terms from Amiram Eldar, May 13 2019

A335252 Numbers k such that k and k+2 have the same unitary abundance (A129468).

Original entry on oeis.org

12, 63, 117, 323, 442, 1073, 1323, 1517, 3869, 5427, 6497, 12317, 18419, 35657, 69647, 79919, 126869, 133787, 151979, 154007, 163332, 181427, 184619, 333797, 404471, 439097, 485237, 581129, 621497, 825497, 1410119, 2696807, 3077909, 3751619, 5145341, 6220607
Offset: 1

Views

Author

Amiram Eldar, May 28 2020

Keywords

Comments

Are 12, 442 and 163332 the only even terms?
Are there any unitary abundant numbers (A034683) in this sequence?
No further even terms up to 10^13. - Giovanni Resta, May 30 2020

Examples

			12 is a term since 12 and 14 have the same unitary abundance: A129468(12) = usigma(12) - 2*12 = 20 - 24 = -4, and A129468(14) = usigma(14) - 2*14 = 24 - 28 = -4.
		

Crossrefs

The unitary version of A330901.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); udef[n_] := 2*n - usigma[n]; Select[Range[10^5], udef[#] == udef[# + 2] &]

A335251 Numbers k such that k and k+1 have the same unitary abundance (A129468).

Original entry on oeis.org

1, 20, 35, 143, 208, 2623, 5183, 27796, 11177983, 69677008, 920158207, 1099508482048
Offset: 1

Views

Author

Amiram Eldar, May 28 2020

Keywords

Comments

Are there any unitary abundant numbers (A034683) in this sequence?
a(12) > 10^11.
a(13) > 8*10^12. Also terms: 2^36 * 68719644673, 2^48 * 281474901625261, 2^64 * 18446632096776339457. - Giovanni Resta, May 29 2020

Examples

			1 is a term since 1 and 2 have the same unitary abundance: A129468(1) = usigma(1) - 2*1 = 1 - 2 = -1, and A129468(2) = usigma(2) - 2*2 = 3 - 4 = -1.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); udef[n_] := 2*n - usigma[n]; Select[Range[30000], udef[#] == udef[# + 1] &]

Extensions

a(12) from Giovanni Resta, May 29 2020

A336672 Unitary barely 3-deficient numbers: numbers m such that usigma(k)/k < usigma(m)/m < 3 for all numbers k < m, where usigma is the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 110670, 182910, 898590, 22851570, 26266170, 45255210, 64124970, 265402410, 1374105810, 1631268870
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2020

Keywords

Comments

Unitary 3-deficient numbers are numbers k such that usigma(k) < 3*k, i.e., numbers that are not in A285615.
The corresponding values of usigma(m)/m are 1, 1.5, 2, 2.4, 2.742..., 2.992..., ...
Are terms squarefree? At some point, do we know that a(n) is divisible by primorial(k) for all n > N(k) for some N(k)? - David A. Corneth, Jul 29 2020
Not all the terms are squarefree. E.g., a(12) = 45255210 is divisible by 11^2.

Crossrefs

The unitary version of A307122.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); s = {}; rm = 0; Do[r = usigma[n]/n; If[r < 3 && r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^5}]; s
Showing 1-10 of 11 results. Next