A129492 Composite numbers k such that 2^k mod k is a power of 2.
6, 9, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 38, 39, 40, 44, 46, 48, 51, 52, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 72, 74, 76, 78, 80, 82, 84, 85, 86, 87, 90, 92, 93, 94, 96, 102, 106, 111, 112, 114, 116, 118, 120, 122, 123, 124, 126, 129, 132, 133, 134, 138
Offset: 1
Examples
15 is a term since 2^15 mod 15 = 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [2..150]| not IsPrime(k) and not IsZero(a) and (PrimeDivisors(a) eq [2]) where a is 2^k mod k ]; // Marius A. Burtea, Dec 04 2019
-
Maple
filter:= proc(n) local k; if isprime(n) then return false fi; k:= 2 &^ n mod n; k > 1 and k = 2^padic:-ordp(k,2) end proc: select(filter, [$4..1000]); # Robert Israel, Dec 03 2019
-
Mathematica
Select[Range@ 141, IntegerQ@ Log[2, PowerMod[2, #, # ]] &]
Comments