A129494 Composite numbers k such that 4^k mod k is a power of 4 greater than 1.
6, 12, 15, 20, 22, 24, 26, 28, 30, 34, 38, 40, 46, 48, 56, 58, 60, 62, 66, 69, 72, 74, 77, 80, 82, 84, 85, 86, 87, 88, 91, 93, 94, 96, 102, 104, 105, 106, 111, 117, 118, 120, 122, 123, 126, 129, 132, 134, 140, 141, 142, 144, 146, 158, 159, 166, 168, 170, 177, 178, 182
Offset: 1
Examples
22 is a term since 4^22 mod 22 = 16.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[k:k in [2..200]| not IsPrime(k) and not IsZero(a) and (PrimeDivisors(a) eq [2]) and &+[j[1]*j[2]: j in Factorization(a) ] mod 4 eq 0 where a is 4^k mod k]; // Marius A. Burtea, Dec 04 2019
-
Maple
filter:= proc(n) local k,j; if isprime(n) then return false fi; k:= 4 &^ n mod n; j:= padic:-ordp(k,2); k>1 and j::even and k = 2^j end proc: select(filter, [$4..1000]); # Robert Israel, Dec 03 2019
-
Mathematica
Select[ Range@ 161, IntegerQ@ Log[4, PowerMod[4, #, # ]] &]
Extensions
Corrected and extended by R. J. Mathar, May 16 2008
Comments