cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129502 For n=2^k, a(n) = binomial(k + 2, 2), else 0.

Original entry on oeis.org

1, 3, 0, 6, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Apr 17 2007

Keywords

Comments

Row sums of triangle A129501.

Examples

			a(4) = 6 = sum of A129501 terms: (3 + 2 + 0 + 1).
		

Crossrefs

Programs

  • Mathematica
    Table[If[IntegerQ[Log2[n]],Binomial[Log2[n]+2,2],0],{n,100}] (* Harvey P. Dale, May 10 2022 *)
  • PARI
    a(n)={my(e=valuation(n, 2)); if(n==1<Andrew Howroyd, Aug 03 2018

Formula

From Andrew Howroyd, Aug 04 2018: (Start)
Multiplicative with a(2^e) = binomial(e + 2, 2), a(p^e) = 0 for odd prime p.
Dirichlet convolution of A104117 and A209229.
a(n) = Sum_{d|n} A104117(n/d) * A209229(d). (End)
Dirichlet g.f.: 1/(1 - 1/2^s)^3. - Amiram Eldar, Oct 28 2023

Extensions

Name changed and terms a(40) and beyond from Andrew Howroyd, Aug 03 2018