cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129535 Number of permutations of 1,...,n with at least one pair of adjacent consecutive entries (i.e., of the form k(k+1) or (k+1)k), n >= 2.

Original entry on oeis.org

2, 6, 22, 106, 630, 4394, 35078, 315258, 3149494, 34620010, 415222566, 5395737242, 75516784982, 1132471183626, 18115911832390, 307919970965434, 5541804787940598, 105282261866132138, 2105441434230129254, 44210612765653749210, 972564180363044943766
Offset: 2

Views

Author

Emeric Deutsch, May 05 2007

Keywords

Comments

Column 1 of A129534. a(n) = n! - A002464(n).
Column k=2 of A322481.

Examples

			a(4)=22 because 3142 and 2413 are the only permutations of 1,2,3,4 with no adjacent consecutive entries.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.40.

Crossrefs

Programs

  • Maple
    E:=x->sum(n!*x^n,n=0..35): G:=E(x)-E(x*(1-x)/(1+x)): Gser:=series(G,x=0,30): seq(coeff(Gser,x,n),n=2..23);

Formula

G.f.: E(x) - E(x(1-x)/(1+x)), where E(x) = Sum_{n>=0} n!*x^n.
a(n) = n! - Sum_{k=1..n} ((-1)^(n-k)*k!*Sum_{i=0..n-k} binomial(i+k-1, k-1)*binomial(k, n-i-k)), n > 0. - Vladimir Kruchinin, Sep 08 2010
D-finite with recurrence a(n) +2*(-n+1)*a(n-1) +(n^2-2*n-2)*a(n-2) +(-n^2+7*n-14)*a(n-3) -(n-3)*(n-5)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jul 26 2022