A129563 Primes not in a certain recursively defined set of primes.
101, 151, 197, 251, 401, 491, 503, 601, 607, 677, 701, 727, 751, 809, 883, 907, 983, 1051, 1151, 1201, 1213, 1301, 1373, 1451, 1453, 1471, 1511, 1601, 1619, 1667, 1801, 1901, 1951, 2029, 2179, 2251, 2351, 2417, 2549, 2551, 2647, 2663, 2719, 2801, 2843, 2851, 2903, 2909
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..1000
- H. Donnelly, On a problem concerning Euler's phi-function, Am. Math. Monthly 80 (9) (1973) 1029-1031.
- V. Klee, On a conjecture of Carmichael, Bull. Am. Math. Soc. 53 (1947) 1183-1186.
- V. Klee, Is there an n for which phi(x)=n has a unique solution?, Am. Math. Monthly 76 (3) (1969) 288-289.
- Florentin Smarandache, On Carmichael's Conjecture, arXiv preprint arXiv:0704.2453 [math.GM], Apr 19 2007.
Programs
-
Maple
isM := proc(n) option remember; local p1,pe,p,e ; if not isprime(n) then return false; elif n in {2,3} then return true; else for pe in ifactors(n-1)[2] do p := pe[1] ; e := pe[2] ; if p = 2 and e > 41 then return false; elif p = 3 and e > 46 then return false; elif e > 1 and p> 3 then return false; elif not procname(p) then return false; end if; end do: return true; end if; end proc: isA129563 := proc(n) isprime(n) and not isM(n) ; end proc: for n from 2 to 3000 do if isA129563(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jul 03 2017
-
Mathematica
isM[n_] := isM[n] = Module[{p, e}, Which[!PrimeQ[n], Return[False], 2 <= n <= 3, Return[True], True, Do[{p, e} = pe; Which[p == 2 && e > 41, Return[False], p == 3 && e > 46, Return[False], e > 1 && p > 3, Return[False], !isM[p], Return[False]], {pe, FactorInteger[n-1]}], True, Return[True]]] Select[Range[2, 3000], PrimeQ[#] && !isM[#]&] (* Jean-François Alcover, Dec 02 2017, after R. J. Mathar *)
Extensions
Definition of M clarified by R. J. Mathar, Jul 03 2017
Comments