cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129588 Expansion of q^-1 * theta_2(q)^4 in powers of q^2.

Original entry on oeis.org

16, 64, 96, 128, 208, 192, 224, 384, 288, 320, 512, 384, 496, 640, 480, 512, 768, 768, 608, 896, 672, 704, 1248, 768, 912, 1152, 864, 1152, 1280, 960, 992, 1664, 1344, 1088, 1536, 1152, 1184, 1984, 1536, 1280, 1936, 1344, 1728, 1920, 1440
Offset: 0

Views

Author

Ralf Stephan, May 30 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 16 + 64*x + 96*x^2 + 128*x^3 + 208*x^4 + 192*x^5 + 224*x^6 + ...
G.f. = 16*q + 64*q^3 + 96*x^5 + 128*q^7 + 208*q^9 + 192*q^11 + 224*q^13 + ...
		

References

  • K. Bobek, Einleitung in die Theorie der elliptischen Funktionen, Teubner Leipzig, 1884, p. 101.

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[q^(-1/2)*EllipticTheta[2, 0, q^(1/2)]^4, {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Apr 15 2018 *)
    CoefficientList[Series[x^(-1/2)*EllipticTheta[2, 0, x^(1/2)]^4, {x, 0, 50}], x] (* Vaclav Kotesovec, Apr 16 2018 *)
  • PARI
    {a(n) = if( n<0, 0, 16 * sigma(2*n + 1))}; /* Michael Somos, Jun 11 2007 */

Formula

G.f. Sum_{k>=0} a(k)*q^(2*k + 1) = theta2(q)^4 = theta3(q)^4 - theta4(q)^4.
Expansion of 16 * psi(x)^4 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jun 11 2007
Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in odd integers. - Michael Somos, Jun 11 2007
G.f.: 16 * (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Jun 11 2007
a(n) = 16*A008438(n) = A000118(n) - A096727(n).