A129623 Numbers which are the product of a non-palindrome and its reversal, where leading zeros are not allowed.
252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 20502, 23632, 26962, 30492, 31003, 34222
Offset: 1
Examples
252 = 12*21.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..11195 (terms < 10^9)
Programs
-
Mathematica
Take[Union[ Transpose[ Select[Table[{n, n* FromDigits[Reverse[IntegerDigits[n]]]}, {n, 1000}], Mod[ #[[1]], 10] != 0 && #[[1]] != FromDigits[Reverse[IntegerDigits[ #[[1]]]]] &]][[2]]], 100] upto2ndigits@n_ := Union@(If[(i = IntegerReverse@#) > #, i*#, Nothing] & /@Range@(10^n - 1)); upto2ndigits@3 (* Hans Rudolf Widmer, Sep 06 2024 *)
-
Python
from sympy import divisors def ok(n): return any(n==d*int(s[::-1]) for d in divisors(n)[1:-1] if (s:=str(d))!=s[::-1] and s[-1]!="0") print([k for k in range(36000) if ok(k)]) # Michael S. Branicky, Sep 07 2024
-
Python
# instantly generates 44185 terms with n = 5 def aupto2ndigits(n): return(sorted(set(i*int(s[::-1]) for i in range(12, 10**n) if i%10 != 0 and (s:=str(i)) != s[::-1]))) print(aupto2ndigits(2)) # Michael S. Branicky, Sep 08 2024 after Hans Rudolf Widmer
Extensions
Offset corrected by Stefano Spezia, Sep 07 2024
Comments