cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129623 Numbers which are the product of a non-palindrome and its reversal, where leading zeros are not allowed.

Original entry on oeis.org

252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 20502, 23632, 26962, 30492, 31003, 34222
Offset: 1

Views

Author

Tanya Khovanova, May 30 2007

Keywords

Comments

The smallest square in this sequence is 63504 = 252*252 = 144*441.

Examples

			252 = 12*21.
		

Crossrefs

Programs

  • Mathematica
    Take[Union[ Transpose[ Select[Table[{n, n* FromDigits[Reverse[IntegerDigits[n]]]}, {n, 1000}], Mod[ #[[1]], 10] != 0 && #[[1]] != FromDigits[Reverse[IntegerDigits[ #[[1]]]]] &]][[2]]], 100]
    upto2ndigits@n_ := Union@(If[(i = IntegerReverse@#) > #, i*#, Nothing] & /@Range@(10^n - 1)); upto2ndigits@3 (* Hans Rudolf Widmer, Sep 06 2024 *)
  • Python
    from sympy import divisors
    def ok(n): return any(n==d*int(s[::-1]) for d in divisors(n)[1:-1] if (s:=str(d))!=s[::-1] and s[-1]!="0")
    print([k for k in range(36000) if ok(k)]) # Michael S. Branicky, Sep 07 2024
    
  • Python
    # instantly generates 44185 terms with n = 5
    def aupto2ndigits(n): return(sorted(set(i*int(s[::-1]) for i in range(12, 10**n) if i%10 != 0 and (s:=str(i)) != s[::-1])))
    print(aupto2ndigits(2))
    # Michael S. Branicky, Sep 08 2024 after Hans Rudolf Widmer

Extensions

Offset corrected by Stefano Spezia, Sep 07 2024