cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A072443 Nonsquares which are the product of two numbers with the same digits (leading zeros are forbidden).

Original entry on oeis.org

252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 11110, 12240, 13390, 13552, 14560, 14803, 15750, 16074
Offset: 1

Views

Author

N. J. A. Sloane, Nov 11 2002

Keywords

Examples

			12*21 = 252 = 12*21, 403 = 13*31, 574 = 14*41, etc
		

References

  • P. Vaderlind, R. K. Guy and L. C. Larsen, The Inquisitive Problem Solver, Math. Assoc. Am., 2002, Problem P185.

Crossrefs

A077760 is a subsequence.

Programs

  • PARI
    {for(n=100,15000,k=floor(log(n)/log(100)); f=divisors(n); v=[]; for(h=1,matsize(f)[2], if(10^k1, w=[]; for(i=1,b,s=[]; a=v[i]; while(a>0,d=divrem(a,10); a=d[1]; s=concat(d[2],s)); w=concat(w,[vecsort(s)])); c=0; for(i=1,b-1, for(j=i+1,b,if(c<1&&w[i]==w[j],if(v[i]*v[j]==n,print1(n,","); c=1))))))}
    
  • Python
    from math import isqrt
    from sympy import divisors
    def ok(n): return isqrt(n)**2Michael S. Branicky, Sep 08 2024

Extensions

Extended by Klaus Brockhaus, Nov 12 2002
a(42) and beyond from Michael S. Branicky, Sep 08 2024
Showing 1-1 of 1 results.