cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077760 Numbers which in at least two ways are the product of two distinct numbers with the same digits (leading zeros are forbidden).

Original entry on oeis.org

101556, 121968, 124012, 133875, 144648, 172900, 185472, 226800, 352170, 433755, 2096640, 3779136, 4264416, 5166504, 5333680, 5448960, 5651919, 5894784, 5955264, 5983936, 6003088, 6174630, 6197724, 6324318, 6351840, 6429600, 6494400, 6514060, 6794424, 6874560, 7064496
Offset: 1

Views

Author

Klaus Brockhaus, Nov 14 2002

Keywords

Examples

			101556 = 156*651 = 273*372; 2096640 = 1092*1920 = 1365*1536.
		

Crossrefs

Programs

  • PARI
    {for(n=100, 6500000,  my(k=logint(n,100), f=divisors(n), v=[]); for(h=1, matsize(f)[2], if(10^k1, my(w=[]); for(i=1, b, my(s=[], a=v[i]); while(a>0, my(d=divrem(a, 10)); a=d[1]; s=concat(d[2], s)); w=concat(w, [vecsort(s)])); my(c=0); for(i=1, b-1, for(j=i+1, b, if(c<2&&w[i]==w[j], if(v[i]*v[j]==n, if(c==1, print1(n, ", "); c=2, c=1)))))))}

Extensions

Offset changed to 1 by and more terms from David A. Corneth, Sep 08 2024
Name corrected by Sean A. Irvine, Jun 11 2025

A129623 Numbers which are the product of a non-palindrome and its reversal, where leading zeros are not allowed.

Original entry on oeis.org

252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 20502, 23632, 26962, 30492, 31003, 34222
Offset: 1

Views

Author

Tanya Khovanova, May 30 2007

Keywords

Comments

The smallest square in this sequence is 63504 = 252*252 = 144*441.

Examples

			252 = 12*21.
		

Crossrefs

Programs

  • Mathematica
    Take[Union[ Transpose[ Select[Table[{n, n* FromDigits[Reverse[IntegerDigits[n]]]}, {n, 1000}], Mod[ #[[1]], 10] != 0 && #[[1]] != FromDigits[Reverse[IntegerDigits[ #[[1]]]]] &]][[2]]], 100]
    upto2ndigits@n_ := Union@(If[(i = IntegerReverse@#) > #, i*#, Nothing] & /@Range@(10^n - 1)); upto2ndigits@3 (* Hans Rudolf Widmer, Sep 06 2024 *)
  • Python
    from sympy import divisors
    def ok(n): return any(n==d*int(s[::-1]) for d in divisors(n)[1:-1] if (s:=str(d))!=s[::-1] and s[-1]!="0")
    print([k for k in range(36000) if ok(k)]) # Michael S. Branicky, Sep 07 2024
    
  • Python
    # instantly generates 44185 terms with n = 5
    def aupto2ndigits(n): return(sorted(set(i*int(s[::-1]) for i in range(12, 10**n) if i%10 != 0 and (s:=str(i)) != s[::-1])))
    print(aupto2ndigits(2))
    # Michael S. Branicky, Sep 08 2024 after Hans Rudolf Widmer

Extensions

Offset corrected by Stefano Spezia, Sep 07 2024
Showing 1-2 of 2 results.